首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   17篇
  311篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2017年   4篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   11篇
  2011年   22篇
  2010年   5篇
  2009年   6篇
  2008年   13篇
  2007年   17篇
  2006年   16篇
  2005年   7篇
  2004年   20篇
  2003年   5篇
  2002年   15篇
  2001年   15篇
  2000年   9篇
  1999年   11篇
  1998年   3篇
  1997年   2篇
  1995年   4篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1972年   6篇
  1971年   2篇
  1970年   2篇
  1969年   8篇
  1967年   1篇
  1966年   1篇
  1965年   5篇
  1962年   1篇
  1960年   4篇
  1959年   1篇
排序方式: 共有311条查询结果,搜索用时 0 毫秒
111.
The melB gene coding for the melibiose carrier of Klebsiella pneumoniae was cloned and sequenced. There were two potential translation initiation sites. It was predicted that the melibiose carrier consists of 471 (or 467) amino acid residues. Seventy-eight percent of the 471 amino acids were identical to the Escherichia coli melibiose carrier. Sugar transport characteristics were studied using an E. coli mel- mutant expressing cloned K. pneumoniae melB gene. Accumulation of melibiose via the K. pneumoniae melibiose carrier was not stimulated by adding NaCl or LiCl which stimulates melibiose accumulation via the E. coli melibiose carrier. Lactose was accumulated only in the presence of LiCl. TMG (methyl-1-thio-beta-D-galactopyranoside) was accumulated in the absence of added NaCl or LiCl. The accumulation was stimulated by LiCl but not by NaCl. Rapid H+ uptake was observed when melibiose or TMG was added to cell suspensions. These results suggest that the preferred cation couplings via K. pneumoniae melibiose carrier are H(+)-melibiose, Li(+)-lactose, and H+/Li(+)-TMG. This coupling spectrum is quite different from that of the E. coli melibiose carrier. It is of special interest that the K. pneumoniae melibiose carrier seems to be lacking the ability to recognize Na+ which is a preferred coupling cation of the E. coli melibiose carrier for all known sugar substrates. Further investigation of these two carriers may give us insight into the Na+ recognition site.  相似文献   
112.
A mutant of Escherichia coli with defective Na+/H+ antiporter was isolated. The rationale for its isolation was that cells possessing defective Na+/H+ antiporter, which is essential for establishment of a Na+ gradient, could not grow with a carbon source that was taken up with Na+. The mutant had no appreciable Na+/H+ antiporter activity, but its K+/H+ antiporter and Ca2+/H+ antiporter activities were normal. Judging from the reversion frequency, the defect seems to be due to a single mutation. The mutant could not grow at alkaline pH. Therefore, the Na+/H+ antiporter, but not the K+/H+ antiporter or the Ca2+/H+ antiporter, seems to be responsible for pH regulation in alkaline medium. This mutant will be useful for cloning the Na+/H+ antiporter gene and for detection of Na+-substrate cotransport systems.  相似文献   
113.
The paraoxonase gene family and atherosclerosis   总被引:11,自引:0,他引:11  
Epidemiologic, genetic, and biochemical studies support an antiatherogenic role for paraoxonase (PON) 1. While the precise mechanism by which PON1 protects against the development of atherosclerosis is unclear, in vitro studies and the results from PON1 knockout and transgenic mice suggest that this protective effect may be attributed to PON1's ability to attenuate the oxidative modification of lipoprotein particles. The two other members of the PON gene family, namely, PON2 and PON3, have also been reported to possess antioxidant properties and may exhibit antiatherogenic capacities as well. Previous studies have demonstrated that PON1 expression is downregulated by oxidative stress. In contrast, more recent studies have shown that PON2 expression is upregulated in response to oxidative stress-inducing agents, while PON3 expression remains unchanged. While the physiological function of these proteins is unknown, studies currently underway using PON2 and PON3 knockout and transgenic mice should enable us to tease out the apparently redundant functions of these three proteins and yield clues as to their physiological function as well as their role in atherogenesis.  相似文献   
114.
The contribution of complement activation to allergic asthma remains controversial. In order to elucidate the role played by the complement split products, anaphylatoxins C3a and C5a, we evaluated their effects on production of cysteinyl-leukotrienes (cysLTs) by human lung fragments following an anaphylactic reaction. The lung tissues obtained from two patients with lung cancer showed C5aR-, C5L2R-, and C3aR-mRNA expression. When the chopped lung fragments passively sensitized with human IgE were incubated with anti-human IgE antibody, a significant amount of cysLTs was generated in comparison with the control (without anti-IgE antibody). The co-addition of human C5a at doses of 0.1 to 10 ng/ml to the anti-IgE antibody potentiated cysLT production. The response was bell-shaped in distribution, significant, and peaked at a C5a concentration of 1 ng/ml. The co-addition of human C3a up to 1,000 ng/ml seemed to increase cysLT production, but not to any significant extent. A novel C5a receptor complementary peptide, acetylated peptide A, dose-dependently inhibited cysLT production by the human lung fragments following the anaphylactic reaction in the presence of 1 ng/ml C5a. However, this peptide did not inhibit cysLT production in the presence of 100 ng/ml C3a. It is suggested that the anaphylatoxin C5a potentiates cysLT production in human lung tissues and contributes to allergic inflammation in disorders such as asthma, thus acetylated peptide A may be useful for suppressing allergic inflammation in the lungs.  相似文献   
115.

Background

Malaria takes a heavy toll in Niger, one of the world's poorest countries. Previous evaluations conducted in the context of the strategy for the Integrated Management of Childhood Illness, showed that 84% of severe malaria cases and 64 % of ordinary cases are not correctly managed. The aim of this survey was to describe epidemiological, clinical and biological features of malaria among <5 year-old children in the paediatric department of the National Hospital of Niamey, Niger's main referral hospital.

Methods

The study was performed in 2003 during the rainy season from July 25th to October 25th. Microscopic diagnosis of malaria, complete blood cell counts and measurement of glycaemia were performed in compliance with the routine procedure of the laboratory. Epidemiological data was collected through interviews with mothers.

Results

256 children aged 3–60 months were included in the study. Anthropometrics and epidemiological data were typical of a very underprivileged population: 58% of the children were suffering from malnutrition and all were from poor families. Diagnosis of malaria was confirmed by microscopy in 52% of the cases. Clinical symptoms upon admission were non-specific, but there was a significant combination between a positive thick blood smear and neurological symptoms, and between a positive thick blood smear and splenomegaly. Thrombopaenia was also statistically more frequent among confirmed cases of malaria. The prevalence of severe malaria was 86%, including cases of severe anaemia among < 2 year-old children and neurological forms after 2 years of age. Overall mortality was 20% among confirmed cases and 21% among severe cases.

Conclusions

The study confirmed that malaria was a major burden for the National Hospital of Niamey. Children hospitalized for malaria had an underprivileged background. Two distinctive features were the prevalence of severe malaria and a high mortality rate. Medical and non-medical underlying factors which may explain such a situation are discussed.  相似文献   
116.
117.
Fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is an enzyme responsible for the de novo synthesis of sphingolipids containing 2-hydroxy fatty acids. 2-Hydroxy sphingolipids are highly abundant in the brain, as major myelin galactolipids (galactosylceramide and sulfatide) contain a uniquely high proportion ( approximately 50%) of 2-hydroxy fatty acids. Other tissues, such as epidermis, epithelia of the digestive tract, and certain cancers, also contain 2-hydroxy sphingolipids. The physiological significance of the 2-hydroxylation on N-acyl chains of subsets of sphingolipids is poorly understood. To study the roles of FA2H and 2-hydroxy sphingolipids in various tissues, we developed a highly sensitive in vitro FA2H assay. FA2H-dependent fatty acid 2-hydroxylation requires an electron transfer system, which was reconstituted in vitro with an NADPH regeneration system and purified NADPH:cytochrome P-450 reductase. A substrate [3,3,5,5-D(4)]tetracosanoic acid was solubilized in alpha-cyclodextrin solution, and the 2-hydroxylated product was quantified by gas chromatography-mass spectrometry after conversion to a trimethylsilyl ether derivative. When the microsomes of FA2H-transfected COS7 cells were incubated with the electron transfer system and deuterated tetracosanoic acid, deuterated 2-hydroxy tetracosanoic acid was formed in a time- and protein-dependent manner. With this method, FA2H activities were reproducibly measured in murine brains and tissue culture cell lines.  相似文献   
118.
The autonomous replication region of plasmid ColIb-P9 contains repZ encoding the RepZ replication protein, and inc and repY as the negative and positive regulators of repZ translation, respectively. inc encodes the antisense Inc RNA, and repY is a short open reading frame upstream of repZ. Translation of repY enables repZ translation by inducing formation of a pseudoknot containing stem-loop I, which base pairs with the sequence preceding the repZ start codon. Inc RNA inhibits both repY translation and formation of the pseudoknot by binding to the loop I. To investigate control of repY expression by Inc RNA, we isolated a number of mutations that express repY in the presence of Inc RNA. One class of mutations delete a part of another stem-loop (II), which derepresses repY expression by initiating translation at codon 10 (GUG), located within this structure. Point mutations in stem-loop II can also derepress repY translation, and the introduction of compensatory base-changes restores control of repY translation. These results not only indicate that suppressing a cryptic start codon by secondary structure is important for maintaining the translational control of repZ but also demonstrate that the position of start site for repY translation is critical for its control by Inc RNA. Thus, Inc RNA controls repY translation by binding in the vicinity of the start codon, in contrast to the control of repZ expression at the level of loop-loop interaction.  相似文献   
119.
120.
The permeabilization of yeast cells with methanol, ethanol, and isopropyl alcohol under various conditions was studied to develop the preparation method of high activity whole cell biocatalysts. Recombinant Saccharomyces cerevisiae, which intracellularly overexpresses glyoxalase I and catalyzes the conversion of methylglyoxal to S‐lactoylglutathione in the presence of glutathione, was used as the model system. The permeabilization treatments with alcohols significantly enhanced the activities of yeast cells. Especially, the initial S‐lactoylglutathione production rates of cells permeabilized with 40% ethanol and isopropyl alcohol solutions for 10 min at 4°C were high and were 364 and 582 times larger than those of untreated cells, respectively. These permeabilized yeast cells retained high activities during repeated batch reactions. Even in third batch reaction, they showed approximately 70–80% of the activity in the first batch. The plasma membrane of S. cerevisiae cells was damaged by the treatment with alcohol solutions in such a way that leakage of glyoxalase I from the cells is rather small and that both substrate and product show very high permeability. The initial S‐lactoylglutathione production rates of these permeabilized cells were 1.5–2.5 times larger than those of glyoxalase I in cell extracts prepared by ethyl acetate method from the same amount of cells. These results demonstrate that the recombinant S. cerevisiae cells permeabilized with alcohol solutions under the optimum condition are very effective whole cell biocatalysts. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 54–60, 1999.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号