首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   41篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   16篇
  2014年   16篇
  2013年   46篇
  2012年   33篇
  2011年   41篇
  2010年   22篇
  2009年   22篇
  2008年   34篇
  2007年   34篇
  2006年   30篇
  2005年   33篇
  2004年   18篇
  2003年   27篇
  2002年   28篇
  2001年   27篇
  2000年   27篇
  1999年   22篇
  1998年   10篇
  1997年   14篇
  1996年   8篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   22篇
  1991年   10篇
  1990年   14篇
  1989年   8篇
  1988年   15篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
排序方式: 共有725条查询结果,搜索用时 31 毫秒
81.
82.
Two novel steroidal alkaloid glycosides, lycioside A (1) and lycioside B (2) were isolated from the seeds of Lycium barbarum. Their structures were determined by various spectroscopic analyses. Compounds 1 and 2 showed inhibitory activities with the IC(50) values of 75.3 and 72.8 μM against rat intestinal sucrase, and 63.4 and 59.1 μM against rat intestinal maltase.  相似文献   
83.
Ivanov B  Asada K  Kramer DM  Edwards G 《Planta》2005,220(4):572-581
Redox changes of the reaction-center chlorophyll of photosystem I (P700) and chlorophyll fluorescence yield were measured in bundle sheath strands (BSS) isolated from maize (Zea mays L.) leaves. Oxidation of P700 in BSS by actinic light was suppressed by nigericin, indicating the generation of a proton gradient across the thylakoid membranes of BSS chloroplasts. Methyl viologen, which transfers electrons from photosystem I (PSI) to O2, caused a considerable decrease in the reduction rate of P700+ in BSS after turning off actinic light, showing that electron flow from the acceptor side of PSI to stromal components is critical for this reduction. Ascorbate (Asc), and to a lesser extent malate (Mal), caused a lower level of P700+ in BSS under aerobic conditions in far-red light, implying electron donation from these substances to the intersystem carriers. When Asc or Mal was added to BSS during pre-illumination under anaerobic conditions in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), the far-red-induced level of P700+ was lowered. The results suggest Asc and Mal can cause reduction of stromal donors, which in turn establishes conditions for rapid PSI-driven P700+ reduction. Addition of these metabolites also strongly stimulated the development of a proton gradient in thylakoids under aerobic conditions in the absence of DCMU, i.e. under conditions analogous to those in vivo. Ascorbate was a much more effective electron donor than Mal, suggesting it has a physiological role in activation of cyclic electron flow around PSI.  相似文献   
84.
The chloroplastic isoform of monodehydroascorbate (MDA) radical reductase was purified from spinach chloroplasts and leaves. The cDNA of chloroplastic MDA reductase was cloned, and its deduced amino acid sequence, consisting of 497 residues, showed high homology with those of putative organellar MDA reductases deduced from cDNAs of several plants. The amino acid sequence of the amino terminal of the purified enzyme suggested that the chloroplastic enzyme has a transit peptide consisting of 53 residues. A southern blot analysis suggested the occurrence of a gene encoding another isoform homologous to the chloroplastic isoform in spinach. The recombinant enzyme was highly expressed in Eschericia coli using the cDNA, and purified to a homogeneous state with high specific activity. The enzyme properties of the chloroplastic isoform are presented in comparison with those of the cytosolic form.  相似文献   
85.
The crystal structure of homoisocitrate dehydrogenase involved in lysine biosynthesis from Thermus thermophilus (TtHICDH) was determined at 1.85-A resolution. Arg85, which was shown to be a determinant for substrate specificity in our previous study, is positioned close to the putative substrate binding site and interacts with Glu122. Glu122 is highly conserved in the equivalent position in the primary sequence of ICDH and archaeal 3-isopropylmalate dehydrogenase (IPMDH) but interacts with main- and side-chain atoms in the same domain in those paralogs. In addition, a conserved Tyr residue (Tyr125 in TtHICDH) which extends its side chain toward a substrate and thus has a catalytic function in the related beta-decarboxylating dehydrogenases, is flipped out of the substrate-binding site. These results suggest the possibility that the conformation of the region containing Glu122-Tyr125 is changed upon substrate binding in TtHICDH. The crystal structure of TtHICDH also reveals that the arm region is involved in tetramer formation via hydrophobic interactions and might be responsible for the high thermotolerance. Mutation of Val135, located in the dimer-dimer interface and involved in the hydrophobic interaction, to Met alters the enzyme to a dimer (probably due to steric perturbation) and markedly decreases the thermal inactivation temperature. Both the crystal structure and the mutation analysis indicate that tetramer formation is involved in the extremely high thermotolerance of TtHICDH.  相似文献   
86.
Electro-transfer of small interfering RNA ameliorated arthritis in rats   总被引:3,自引:0,他引:3  
RNA interference provides the powerful means of sequence-specific gene silencing. Particularly, small interfering RNA (siRNA) duplexes may be potentially useful for therapeutic molecular targeting of human diseases, although novel delivery systems should be devised to achieve efficient and organ-specific transduction of siRNA. In the present study, we demonstrated that electro-transfer of a siRNA-polyamine complex made efficient and specific gene knockdown possible in the articular synovium. Targeted suppression of the tumor necrosis factor-alpha gene through this procedure significantly ameliorated collagen-induced arthritis in rats. Our results suggest the potential feasibility of therapeutic intervention with RNA medicines for treatment of rheumatoid and other locomotor diseases.  相似文献   
87.
The Phox(S) strain of Drosophila melanogaster is an electrophoretically slow variant found in a wild population at Victoria, Australia. Prophenol oxidase isoform A(1) from PHOX-S was purified and characterized biochemically and genetically. The purified fraction of A(1) from PHOX-S showed a homodimer with a molecular weight of the subunit of approximately 77 kDa. The Phox(S) strain was temperature sensitive in vivo in culture, and the purified protein was thermolabile in vitro. By the deletion mapping method, the Phox(S) locus was cytologically estimated to be at the location 55-A on the right arm of the second chromosome and 79.6 genetically. These data show that PHOX-S is an electrophoretic variant of MOX and that PHOX-S is the first thermolabile protein found in invertebrate prophenol oxidase.  相似文献   
88.
The Japanese Schizophrenia Sib-Pair Linkage Group (JSSLG) is a multisite collaborative study group that was organized to create a national resource for affected sib pair (ASP) studies of schizophrenia in Japan. We used a high-density single-nucleotide–polymorphism (SNP) genotyping assay, the Illumina BeadArray linkage mapping panel (version 4) comprising 5,861 SNPs, to perform a genomewide linkage analysis of JSSLG samples comprising 236 Japanese families with 268 nonindependent ASPs with schizophrenia. All subjects were Japanese. Among these families, 122 families comprised the same subjects analyzed with short tandem repeat markers. All the probands and their siblings, with the exception of seven siblings with schizoaffective disorder, had schizophrenia. After excluding SNPs with high linkage disequilibrium, we found significant evidence of linkage of schizophrenia to chromosome 1p21.2-1p13.2 (LOD=3.39) and suggestive evidence of linkage to 14q11.2 (LOD=2.87), 14q11.2-q13.2 (LOD=2.33), and 20p12.1-p11.2 (LOD=2.33). Although linkage to these regions has received little attention, these regions are included in or partially overlap the 10 regions reported by Lewis et al. that passed the two aggregate criteria of a meta-analysis. Results of the present study—which, to our knowledge, is the first genomewide analysis of schizophrenia in ASPs of a single Asian ethnicity that is comparable to the analyses done of ASPs of European descent—indicate the existence of schizophrenia susceptibility loci that are common to different ethnic groups but that likely have different ethnicity-specific effects.  相似文献   
89.
Although M-CSF has been used for myelosuppression due to chemotherapy in patients with solid tumors, the effect of exogenous M-CSF on tumor angiogenesis has not been studied. In this study we showed that M-CSF has the ability to accelerate solid tumor growth by enhancing angiogenesis with a novel mechanism. M-CSF accelerated intratumoral vessel density in tumors inoculated into mice, although it did not accelerate the proliferation of malignant cells and cultured endothelial cells in vitro. In both the absence and the presence of tumors, M-CSF significantly increased the circulating cells that displayed phenotypic characteristics of endothelial progenitor cells in mice. Moreover, M-CSF treatment induced the systemic elevation of vascular endothelial growth factor (VEGF). VEGFR-2 kinase inhibitor significantly impaired the effect of M-CSF on tumor growth. In vivo, M-CSF increased VEGF mRNA expression in skeletal muscles. Even after treatment with carageenan and anti-CD11b mAb in mice, M-CSF increased VEGF production in skeletal muscles, suggesting that systemic VEGF elevation was attributed to skeletal muscle VEGF production. In vitro, M-CSF increased VEGF production and activated the Akt signaling pathway in C2C12 myotubes. These results suggest that M-CSF promotes tumor growth by increasing endothelial progenitor cells and activating angiogenesis, and the effects of M-CSF are largely based on the induction of systemic VEGF from skeletal muscles.  相似文献   
90.
Reversible protein tyrosine phosphorylation, coordinately controlled by protein tyrosine kinases and phosphatases, is a critical element in signal transduction pathways regulating a wide variety of biological processes, including cell growth, differentiation, and tumorigenesis. We have previously reported that c-Src belonging to the Src family tyrosine kinase (SFK) becomes dephosphorylated at tyrosine 530 (Y530) and thereby activated during progestin-induced differentiation of human endometrial stromal cells (i.e., decidualization). In this study, to elucidate the role of decidual c-Src activation, we examined whether 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), both potent and selective SFK inhibitors, affected the ovarian steroid-induced decidualization in vitro. Unexpectedly, PP1 paradoxically increased the kinase activity of decidual c-Src together with dephosphorylation of Y530 in the presence of ovarian steroids. Concomitantly, PP1 enhanced morphological and functional decidualization, as determined by induction of decidualization markers, such as insulin-like growth factor binding protein-1 and prolactin. PP2 also advanced decidualization along with up-regulation of the active form of c-Src whose Y-530 was dephosphorylated. In contrast to PP1 and PP2, herbimycin A, a tyrosine kinase inhibitor with less specificity for SFKs, showed little enhancing effect on the expression of both IGFBP-1 and active c-Src. These results suggest that SFKs, including c-Src, may play a significant role in stromal cell differentiation, providing a clue for a possible therapeutic strategy to modulate endometrial function by targeting signaling pathway(s) involving SFKs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号