首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   33篇
  605篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   29篇
  2012年   22篇
  2011年   32篇
  2010年   16篇
  2009年   15篇
  2008年   22篇
  2007年   25篇
  2006年   20篇
  2005年   28篇
  2004年   16篇
  2003年   22篇
  2002年   24篇
  2001年   24篇
  2000年   27篇
  1999年   22篇
  1998年   10篇
  1997年   13篇
  1996年   7篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   22篇
  1991年   10篇
  1990年   14篇
  1989年   8篇
  1988年   15篇
  1987年   4篇
  1986年   7篇
  1985年   7篇
  1984年   9篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
排序方式: 共有605条查询结果,搜索用时 0 毫秒
71.
Summary Effect of pH of culture media on intracellular accumulation of poly-(hydroxybutyrate) (PHB) by a non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides strain RV was studied in pH-stat cultures. Sub-optimal pH for growth, 8.0 or 8.5 gave the higher content of PHB rather than optimal pH 7.5 for growth. These results show that growth and PHB accumulation of the bacteria can be controlled by pH of culture media.  相似文献   
72.
73.
Molecular cloning and nucleotide sequence analysis were performed for the identification of the regulator genes of methicillin resistance in the genome of a MRSA strain N315. Two open reading frames (orfs) were identified in the 5'-flanking region of the mecA gene. Predicted amino acid sequences of these orfs showed extensive homology to the co-inducer and the repressor protein of the penicillinase (PCase) production in Staphylococcus aureus as well as in Bacillus licheniformis. These orfs are considered to encode putative co-inducer and repressor proteins specific for the regulation of methicillin resistance in MRSA.  相似文献   
74.
We isolated and characterized the genomic and complementary DNAs encoding a chitin synthase from an edible basidiomycetous mushroom, Lentinula edodes. The gene (which we designated Lechs1) contains a large open reading frame encoding a polypeptide of 1937 amino acid residues. The open reading frame is interrupted by 14 small introns (49–116 bp). The gene product (LeChs1) consists of a myosin motor-like domain in its N-terminal half and a chitin synthase domain in its C-terminal half, analogous to the class V and VI chitin synthases of other filamentous fungi. Phylogenetic analysis demonstrated that LeChs1 is classified into class VI chitin synthases. Southern blot analysis indicated that Lechs1 is a single-copy gene per haploid genome and that L. edodes has no other highly homologous chitin synthase genes. Northern blot analysis revealed that Lechs1 is expressed throughout the whole stages of fruit-body formation of L. edodes, but its expression level gradually declines in a fruit body-maturation-dependent manner with highest expression in vegetative mycelia and fruit body at the early stage of maturation (immature fruit body). This is the first report on the isolation and characterization of the gene encoding a chitin synthase with a myosin motor-like domain from basidiomycetes.  相似文献   
75.
The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-β family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activin A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle.  相似文献   
76.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   
77.
Plasma membrane ghosts form when plant protoplasts attached to a substrate are lysed to leave a small patch of plasma membrane. We have identified several factors, including the use of a mildly acidic actin stabilization buffer and the inclusion of glutaraldehyde in the fixative, that allow immunofluorescent visualization of extensive cortical actin arrays retained on membrane ghosts made from tobacco (Nicotiana tabacum L.) suspension-cultured cells (line Bright Yellow 2). Normal microtubule arrays were also retained using these conditions. Membrane-associated actin is random; it exhibits only limited coalignment with the microtubules, and microtubule depolymerization in whole cells before wall digestion and ghost formation has little effect on actin retention. Actin and microtubules also exhibit different sensitivities to the pH and K+ and Ca2+ concentrations of the lysis buffer. There is, however, strong evidence for interactions between actin and the microtubules at or near the plasma membrane, because both ghosts and protoplasts prepared from taxol-pretreated cells have microtubules arranged in parallel arrays and an increased amount of actin coaligned with the microtubules. These experiments suggest that the organization of the cortical actin arrays may be dependent on the localization and organization of the microtubules.  相似文献   
78.
BACKGROUND: Many fibroblast growth factor family proteins (FGFs) bind to the heparan sulfate/heparin (HP) subtypes of sulfated glycosaminoglycans (GAGs), and a few have recently been reported to also interact with chondroitin sulfate (CS), another sulfated GAG subtype. METHODS: To gain additional insight into this interaction, we prepared all currently known FGFs (i.e., FGF1-FGF23) and assessed their affinity for HP, CS-B, CS-D and CS-E. In addition, midkine, hepatocyte growth factor and pleiotrophin were studied as other known HP-binding proteins. RESULTS: We found that members of the FGF19 subfamily (i.e., FGF15, 19, 21 and 23) had little or no affinity for HP; all of the other secretable growth factors tested had strong affinities for HP, as was indicated by the finding that their elution from HP-Sepharose columns required 1.0-1.5 M NaCl. We also found that FGF3, 6, 8 and 22 had strong affinities for CS-E, while FGF5 had a moderate affinity for CS-D. The interactions between FGFs and GAGs thus appear to be more diverse than previously understood. GENERAL SIGNIFICANCE: This is noteworthy, as the differential interactions of these growth factors with GAGs may be key determinants of their specific biological activities.  相似文献   
79.
The crystal structure of homoisocitrate dehydrogenase involved in lysine biosynthesis from Thermus thermophilus (TtHICDH) was determined at 1.85-A resolution. Arg85, which was shown to be a determinant for substrate specificity in our previous study, is positioned close to the putative substrate binding site and interacts with Glu122. Glu122 is highly conserved in the equivalent position in the primary sequence of ICDH and archaeal 3-isopropylmalate dehydrogenase (IPMDH) but interacts with main- and side-chain atoms in the same domain in those paralogs. In addition, a conserved Tyr residue (Tyr125 in TtHICDH) which extends its side chain toward a substrate and thus has a catalytic function in the related beta-decarboxylating dehydrogenases, is flipped out of the substrate-binding site. These results suggest the possibility that the conformation of the region containing Glu122-Tyr125 is changed upon substrate binding in TtHICDH. The crystal structure of TtHICDH also reveals that the arm region is involved in tetramer formation via hydrophobic interactions and might be responsible for the high thermotolerance. Mutation of Val135, located in the dimer-dimer interface and involved in the hydrophobic interaction, to Met alters the enzyme to a dimer (probably due to steric perturbation) and markedly decreases the thermal inactivation temperature. Both the crystal structure and the mutation analysis indicate that tetramer formation is involved in the extremely high thermotolerance of TtHICDH.  相似文献   
80.
Summary Electron microscopic studies revealed that major cytological changes in the cortical cells of poplar (Populus euramericana cv. gelrica) began to occur in early September in conjunction with the metabolic transition from the growing to the wintering stage. During this transition, the cells became temporarily rich in endoplasmic reticulum, polysomes and vesicles. As the conspicuous formation of organelles progressed, the large vacuoles became smaller and filled with osmiophilic materials. Undefined organelles (protein-lipid bodies) also increased in number. From late October until March, organelles involved in protein synthesis were sparsely distributed in the cells, indicating that the number of these organelles is probably linked to the seasonal cycle of protein synthesis. In early February, after release from dormancy, fusion of vacuoles proceeded in the cells. The inclusion of organelles and a gradual decrease in the amount of osmiophilic materials in the vacuoles occurred at this stage. Subsequently, the structure of the cells continued to undergo changes to accommodate growth, which occurred in early May.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号