首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   54篇
  2024年   3篇
  2023年   8篇
  2022年   11篇
  2021年   19篇
  2020年   33篇
  2019年   42篇
  2018年   41篇
  2017年   10篇
  2016年   18篇
  2015年   15篇
  2014年   17篇
  2013年   49篇
  2012年   30篇
  2011年   26篇
  2010年   29篇
  2009年   23篇
  2008年   20篇
  2007年   19篇
  2006年   36篇
  2005年   16篇
  2004年   5篇
  2003年   12篇
  2002年   27篇
  2001年   31篇
  2000年   25篇
  1999年   9篇
  1998年   14篇
  1997年   9篇
  1996年   24篇
  1995年   15篇
  1994年   6篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1989年   9篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   6篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1953年   1篇
  1946年   1篇
  1945年   1篇
  1944年   2篇
排序方式: 共有694条查询结果,搜索用时 15 毫秒
101.
A cancer microenvironment generates strong hydrogen bond network system by the positive feedback loops supporting cancer complexity and robustness. Such network functions through the AKT locus generating high entropic energy supporting cancer metastatic robustness. Charged lepton particle muon follows the rule of Bragg effect during a collision with hydrogen network in cancer cells. Muon beam dismantles hydrogen bond network in cancer by the muon-catalyzed fusion, leading to apoptosis of cancer cells. Muon induces cumulative energy appearance on the hydrogen bond network in a cancer cell with its fast decay to an electron and two neutrinos. Thus, muon beam, muonic atom, muon neutrino shower, and electrons simultaneously cause fast neutralization of the AKT hydrogen bond network by the conversion of hydrogen into deuterium or helium, inactivating the hydrogen bond networks and inducing failure of cancer complexity and robustness with the disappearance of a malignant phenotype.  相似文献   
102.
The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different “nuclear landscape” in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell‐type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML‐defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display ~1–3 large PML structures of two morphological types: long linear “rods” or elaborate “rosettes”, which lack substantial SUMO‐1, Daxx, and Sp100. These occur primarily between Day 0–2 of differentiation and become rare thereafter. PML rods may be “taut” between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a “gap” in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML‐defined structures. J. Cell. Biochem. 107: 609–621, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
103.
104.
105.
We investigated the effects of photobiomodulation therapy (PBMT) and conditioned medium (CM) of human bone marrow mesenchymal stem cells (hBM-MSC) individually and/or in combination on the stereological parameters and the expression of basic fibroblast growth factor (bFGF), hypoxia-inducible factor (HIF-1α), and stromal cell–derived factor-1α (SDF-1α) in a wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) in diabetic rats. CM was provided by culturing hBM-MSCs. Type 1 diabetes mellitus (T1DM) was induced in 72 rats, divided into four groups, harboring 18 rats each: group 1 served as a control group, group 2 received PBMT, group 3 received CM, and group 4 received CM + PBMT. On days 4, 7, and 15, six animals from each group were euthanized and the skin samples were separated for stereology examination and gene expression analysis by real-time polymerase chain reaction. In the CM + PBMT, CM, and PBMT groups, significant decreases were induced in the number of neutrophils (1460 ± 93, 1854 ± 138, 1719 ± 248) and macrophages (539 ± 69, 804 ± 63, 912 ± 41), and significant increases in the number of fibroblasts (1073 ± 116, 836 ± 75, 912 ± 41) and angiogenesis (15 230 ± 516, 13 318 ± 1116, 14 041 ± 867), compared with those of the control group (2690 ± 371, 1139 ± 145, 566 ± 90, 12 585 ± 1219). Interestingly, the findings of the stereological examination in the CM + PBMT group were statistically more significant than those in the other groups. In the PBMT group, in most cases, the expression of bFGF, HIF-1α, and SDF-1α, on day 4 (27.7 ± 0.14, 28.8 ± 0.52, 27.5 ± 0.54) and day 7 (26.8 ± 1.4, 29.6 ± 1.4, 28.3 ± 1.2) were more significant than those in the control (day 4, 19.3 ± 0.42, 25.5 ± 0.08, 22.6 ± 0.04; day 7, 22.3 ± 0.22, 28.3 ± 0.59, 24.3 ± 0.19) and other treatment groups. The application of PBMT + CM induced anti-inflammatory and angiogenic activities, and hastened wound healing process in a T1 DM model of MRSA infected wound.  相似文献   
106.
Healthy cells, as well as benign and malignant tumors, depend upon the body's blood supply to bring in oxygen and nutrients and carry away waste products. Using this property against tumors, anti‐angiogenic therapy targets the tumor vasculature with the aim of starving the tumor, and has demonstrated exceptional clinical efficacy against a number of tumors. This review discusses the current state of knowledge regarding anti‐angiogenic therapies presently available to patients, and garners from both preclinical and clinical literature the benefits and side effects associated with anti‐angiogenic therapies, the unfortunate mechanisms of acquired resistance to these novel therapeutics, and highlights promising next generation anti‐angiogenics that may overcome the limitations encountered with first generation therapies. J. Cell. Biochem. 111: 543–553, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
107.
A 35 year old female patient with acute lymphocytic leukemia developed fusariosis in which dissemination appeared to be limited to cutaneous and vascular invasion. The first evidence of fungemia occurred nearly seven months after initial hospitalization. The fungus was identified asFusarium sp. and was considered a contaminant. Two weeks later blood cultures were again positive forFusarium sp. and the patient was placed on amphotericin B and 5-fluorocytosine therapy. The following day developing lesions were noted on her forearms and face; lesions ultimately spread to her trunk, abdomen, and lower extremities. Skin lesion biopsy sections revealed abundant septate and branching hyphae throughout the dermis and within capillaries. Twenty-six days after the initial isolation the patient died. Post-mortem blood cultures gave rise to the same fungus, which was identified asFusarium monoliforme. Postmortem cultures and stains of spleen, liver, lung, and brain specimens were all negative for fungi. The primary source and portal of entry of the organism remained undetermined.  相似文献   
108.
109.
110.
Iron‐ or cobalt‐coordinated heteroatom doped carbons are promising alternatives for Pt‐based cathode catalysts in polymer‐electrolyte fuel cells. Currently, these catalysts are obtained at high temperatures. The reaction conditions complicate the selective and concentrated formation of metal–nitrogen active sites. Herein a mild procedure is introduced, which is conservative toward the carbon support and leads to active‐site formation at low temperatures in a wet‐chemical metal‐coordination step. Active‐site imprinted nitrogen doped carbons are synthesized via ionothermal carbonization employing Lewis‐acidic Mg2+ salt. The obtained carbons with large tubular porosity and imprinted N4 sites lead to very active catalysts with a half‐wave potential (E1/2) of up to 0.76 V versus RHE in acidic electrolyte after coordination with iron. The catalyst shows 4e? selectivity and exceptional stability with a half‐wave potential shift of only 5 mV after 1000 cycles. The X‐ray absorption fine structure as well as the X‐ray absorption near edge structure profiles of the most active catalyst closely match that of iron(II)phthalocyanine, proving the formation of active and stable FeN4 sites at 80 °C. Metal‐coordination with other transition metals reveals that Zn–Nx sites are inactive, while cobalt gives rise to a strong performance increase even at very low concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号