首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   38篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   8篇
  2013年   12篇
  2012年   39篇
  2011年   32篇
  2010年   6篇
  2009年   6篇
  2008年   33篇
  2007年   45篇
  2006年   43篇
  2005年   23篇
  2004年   45篇
  2003年   38篇
  2002年   26篇
  2001年   11篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1931年   1篇
  1924年   1篇
  1910年   1篇
  1873年   2篇
排序方式: 共有464条查询结果,搜索用时 500 毫秒
101.
We present a generic approach for quantitative differential proteomics that reduces data complexity in proteome analysis by automated selection of peptides for MS/MS analysis according to their isotope-labeling ratio. Isotopic reagents were developed that give products which fragment easily to generate a unique pair of signature ions. Using the ion-pair ratio, we show that it is possible to select only BSA peptides (with a 3:1 light heavy isotope ratio) for MS/MS when spiked in a whole yeast extract using Parent (precursor) Ion Quantitation Scanning (PIQS) for MS/MS.  相似文献   
102.
Kruys A  Castlebury LA 《Mycologia》2012,104(2):419-426
Cainiella is an ascomycete genus associated with arctic alpine plants. The systematic position of Cainiella has long been unclear, with current classifications placing the genus in either Sordariales or Xylariales. Our molecular results, based on mtSSU, ITS and nLSU rDNA data, clearly show that the genus belongs in the Sydowiellaceae (Diaporthales). The study also includes new sequences of Sydowiellaceae and contributes to a better knowledge of the phylogenetic relationships of that family.  相似文献   
103.
104.
Freeze-drying is commonly used to stabilize lactic acid bacteria. Many factors have been reported to influence freeze-drying survival, including bacterial species, cell density, lyoprotectant, freezing rate, and other process parameters. Lactobacillus coryniformis Si3 has broad antifungal activity and a potential use as a food and feed biopreservative. This strain is considered more stress sensitive, with a low freeze-drying survival, compared to other commercialized antifungal lactic acid bacterial strains. We used a response surface methodology to evaluate the effects of varying sucrose concentration, cell density and freezing rate on Lb. coryniformis Si3 freeze-drying survival. The water activity of the dry product, as well as selected thermophysical properties of importance for freeze-drying; degree of water crystallization and the glass transition temperature of the maximally freeze concentrated amorphous phase (Tg') were determined. The survival of Lb. coryniformis Si3 varied from less than 6% to over 70% between the different conditions. All the factors studied influenced freeze-drying survival and the most important factor for survival is the freezing rate, with an optimum at 2.8 degrees C/min. We found a co-dependency between freezing rate and formulation ingredients, indicating a complex system and the need to use statistical tools to detect important interactions. The degree of water crystallization decreased and the final water activity increased as a function of sucrose concentration. The degree of water crystallization and Tg' was not affected by the addition of 10(8)-10(10) CFU/ml. At 10(11) CFU/ml, these thermophysical values decreased possibly due to increased amounts of cell-associated unfrozen water.  相似文献   
105.
Both environmental and genetic factors can dramatically affect reproductive performance in mice. In this study we have focused on the identification of genetic regions, quantitative trait loci (QTL), which affect the breeding capacity of female mice. We have identified polymorphic microsatellite markers for the mouse strains used and performed a genomewide scan on 237 females from a gene-segregating backcross between a high breeder and a relatively poor breeder. The high-breeder mouse strain we used is the inbred NFR/N mouse (MHC haplotype H-2q), which has extraordinary good breeding properties. The moderate breeder chosen for F(1) and N2 progeny was B10.Q, which is a genetically well-characterized MHC-congenic mouse of the H-2q haplotype. Each of the 237 females of the N2 generation was allowed to mate twice with MHC-congenic B10.RIII (H-2r) males and twice with B10.Q males. A predetermined number of phenotypes related to reproductive performance were recorded, and these included litter size, neonatal growth, and pregnancy rate. Loci controlling litter size were detected on chromosomes 1 (Fecq3) and 9 (Fecq4). The neonatal growth phenotype was affected by Fecq3 and a locus on chromosome 9 (Neogq1). On chromosome 11 two loci affecting the pregnancy rate (Pregq1 and Pregq2) were identified. Furthermore, on chromosomes 13 and 17 we found loci (Pregq3 and Pregq4) influencing the outcome of allogeneic pregnancy (allogeneic by means of MHC disparity between mother and fetuses). A locus on chromosome 1 affecting maternal body weight was also identified and has been denoted Bwq7. It is well known that reproductive performance is polygenically controlled, and the identification of the major loci in this complex process opens the possibility of investigating the natural genetic control of reproduction.  相似文献   
106.
CD47 is a ubiquitously expressed cell surface glycoprotein that associates with integrins and regulates chemotaxis, migration, and activation of leukocytes. CD47 is also a ligand for signal regulatory protein alpha, a cell surface receptor expressed on monocytes, macrophages, granulocytes, and dendritic cell (DC) subsets that regulates cell activation, adhesion, and migration. Although the function of CD47 in macrophages and granulocytes has been studied in detail, little is known about the role of CD47 in DC biology in vivo. In this study we demonstrate that CD47(-/-) mice exhibit a selective reduction of splenic CD11c(high)CD11b(high)CD8alpha(-)CD4(+) DCs. These DCs correspond to marginal zone DCs and express signal regulatory protein alpha, possibly explaining their selective deficiency in CD47(-/-) mice. Deficiency of marginal zone DCs resulted in impairment of IgG responses to corpusculate T cell-independent Ags. Although epidermal DCs were present in normal numbers in CD47(-/-) mice, their migration to draining lymph nodes in response to contact sensitization was impaired, while their maturation was intact. In vitro, CD47(-/-) mature DCs showed normal CCR7 expression but impaired migration to CCL-19, whereas immature DC response to CCL-5 was only slightly impaired. These results demonstrate a fundamental role of CD47 in DC migration in vivo and in vitro and in the function of marginal zone DCs.  相似文献   
107.
Genetic segregation analysis between NOD and C57BL strains have been used to identify loci associated with autoimmune disease. Only two loci (Cia2 and Cia9) had earlier been found to control development of arthritis, whereas none of the previously identified diabetes loci was of significance for arthritis. We have now made a high-powered analysis of a backcross of NOD genes on to the B10.Q strain for association with collagen-induced arthritis. We could confirm relevance of both Cia2 and Cia9 as well as the interaction between them, but we did not identify any other significant arthritis loci. Immune cellular subtyping revealed that Cia2 was also associated with the number of blood macrophages. Congenic strains of the Cia2 and Cia9 loci on the B10.Q background were made and used to establish a partial advanced intercross (PAI). Testing the PAI mice for development of collagen-induced arthritis confirmed the loci and the interactions and also indicated that at least two genes contribute to the Cia9 locus. Furthermore, it clearly showed that Cia2 is dominant protective but that the protection is not complete. Because these results may indicate that the Cia2 effect on arthritis is not only due to the deficiency of the complement C5, we analyzed complement functions in the Cia2 congenics as well as the PAI mice. These data show that not only arthritis but also C5-dependent complement activity is dominantly suppressed, confirming that C5 is one of the major genes explaining the Cia2 effect.  相似文献   
108.
Endolyn (CD164) is a sialomucin that regulates the proliferation, adhesion, and migration of human haematopoietic stem and progenitor cells. This molecule is predominately localized in endocytotic compartments, where it may contribute to endolysosomal biogenesis and trafficking. In order to more closely define the function of endolyn from an evolutionary view-point, we first analyzed endolyn orthologs in species ranging from insects, fish, and birds to mammals. The predicted molecular structures of the endolyn orthologs from these species are well conserved, particularly with respect to significant O-linked glycosylation of the extracellular domain, and the high degree of amino acid similarities within their transmembrane and cytoplasmic domains, with the latter possessing the lysosomal target signal, YXXphi. Focusing on Drosophila, our studies showed that the subcellular distribution of endolyn in non-polarized Drosophila S2 cells resembles that of its human counterpart in hematopoietic cells, with its predominant localization being within intracellular vesicles, while a small fraction occurs on the cell surface. Both Y --> A and L --> A mutations in the YHTL motif perturbed the normal subcellular distribution of Drosophila endolyn. Interestingly, embryonic and early larval development was often arrested in endolyn-deficient Drosophila mutants. This may partly be due to the role of endolyn in regulating cell proliferation, since knock-down of endolyn expression in S2 cells resulted in up to 50% inhibition of cell growth, with a proportion of cells undergoing apoptosis. Taken together, these results demonstrate that endolyn is an evolutionarily conserved sialomucin fundamentally involved in cell proliferation in both the human and Drosophila melanogaster.  相似文献   
109.
110.
The [URE3] and [PSI+] prions are the infections amyloid forms of the Saccharomyces cerevisiae proteins Ure2p and Sup35p, respectively. Randomizing the order of the amino acids in the Ure2 and Sup35 prion domains while retaining amino acid composition does not block prion formation, indicating that amino acid composition, not primary sequence, is the predominant feature driving [URE3] and [PSI+] formation. Here we show that Ure2p promiscuously interacts with various compositionally similar proteins to influence [URE3] levels. Overexpression of scrambled Ure2p prion domains efficiently increases de novo formation of wild-type [URE3] in vivo. In vitro, amyloid aggregates of the scrambled prion domains efficiently seed wild-type Ure2p amyloid formation, suggesting that the wild-type and scrambled prion domains can directly interact to seed prion formation. To test whether interactions between Ure2p and naturally occurring yeast proteins could similarly affect [URE3] formation, we identified yeast proteins with domains that are compositionally similar to the Ure2p prion domain. Remarkably, all but one of these domains were also able to efficiently increase [URE3] formation. These results suggest that a wide variety of proteins could potentially affect [URE3] formation.AMYLOID fibril formation is associated with numerous human diseases, including Alzheimer''s disease, type II diabetes, and the transmissible spongiform encephalopathies. Yeast prions provide a powerful model system for examining amyloid fibril formation in vivo. [URE3] and [PSI+] are the prion forms of the Saccharomyces cerevisiae proteins Ure2p and Sup35p, respectively (Wickner 1994). In both cases, prion formation is thought to result from conversion of the native protein into an inactive amyloid form (Glover et al. 1997; King et al. 1997; Taylor et al. 1999). Both proteins contain an N-terminal glutamine/asparagine (Q/N)-rich prion-forming domain (PFD) and a C-terminal functional domain (Ter-Avanesyan et al. 1993; Ter-Avanesyan et al. 1994; Masison and Wickner 1995; Liebman and Derkatch 1999; Maddelein and Wickner 1999). Sup35p contains an additional highly charged middle domain (M) that is not required either for prion formation or for normal protein function, but stabilizes [PSI+] aggregates (Liu et al. 2002).Amyloid fibril formation is thought to occur through a seeded polymerization mechanism. In vitro, amyloid fibril formation from native proteins is generally characterized by a significant lag time, thought to result from the slow rate of formation of amyloid nuclei; addition of a small amount of preformed amyloid aggregates (seeds) eliminates the lag time, resulting in rapid polymerization (Glover et al. 1997; Taylor et al. 1999; Serio et al. 2000).Despite considerable study, the mechanism by which amyloid seeds initially form is unclear. At least some of the amyloid proteins involved in human disease can interact with unrelated amyloidogenic proteins, resulting in cross-seeding and modulation of toxicity. Injecting mice with amyloid-like fibrils formed by a variety of short synthetic peptides promotes amyloid formation by amyloid protein A, a protein whose deposition is found in systemic AA amyloidosis (Johan et al. 1998). In yeast, [PSI+] and [PIN+], the prion form of the protein Rnq1p (Sondheimer and Lindquist 2000; Derkatch et al. 2001), both promote the aggregation of and increase toxicity of expanded polyglutamine tracts, like those seen in Huntington''s disease (Osherovich and Weissman 2001; Meriin et al. 2002; Derkatch et al. 2004; Gokhale et al. 2005; Duennwald et al. 2006); however, in Drosophila, [PSI+] aggregates reduce polyglutamine toxicity (Li et al. 2007). Thus, interactions between heterologous amyloidogenic proteins can influence amyloid formation both positively and negatively in vivo.A variety of interactions have been observed among the yeast prions. Under normal cellular conditions, efficient formation, but not maintenance, of [PSI+] requires the presence of [PIN+] (Derkatch et al. 2000). Overexpression of various Q/N-rich proteins can effectively substitute for [PIN+], allowing [PSI+] formation in cells lacking [PIN+] (Derkatch et al. 2001; Osherovich and Weissman 2001). In vitro and in vivo evidence suggest that the ability of [PIN+] to facilitate [PSI+] formation is the result of a direct interaction between Rnq1p aggregates and Sup35p (Derkatch et al. 2004; Bardill and True 2009; Choe et al. 2009). [PIN+] also increases the frequency of [URE3] formation, while [PSI+] inhibits [URE3] formation (Bradley et al. 2002; Schwimmer and Masison 2002).It is unclear whether the ability of Ure2p, Sup35p, and Rnq1p to cross-react is an intrinsic feature of all similar amyloidogenic proteins, or whether it has specifically evolved to regulate prion formation. There is debate as to whether yeast prion formation is a beneficial phenomenon, allowing for regulation of the activity of the prion protein (True and Lindquist 2000; True et al. 2004), or a deleterious event analogous to human amyloid disease (Nakayashiki et al. 2005). Either way, it is likely that interactions between the yeast prion proteins have specifically evolved, either to minimize the detrimental effects of amyloid formation or to regulate beneficial amyloid formation.For both Ure2p and Sup35p, the amino acid composition of the PFD is the predominant feature that drives prion formation. Scrambled versions of Ure2p and Sup35p (in which the order of the amino acids in the PFD was randomized while maintaining amino acid composition) are able to form prions when expressed in yeast as the sole copy Ure2p or Sup35p (Ross et al. 2004, 2005). To examine whether amino acid composition can similarly drive interactions between heterologous proteins, we tested whether the scrambled PFDs can interact with their wild-type counterparts to stimulate prion formation. When overexpressed, scrambled Ure2 PFDs promoted de novo prion formation by wild-type Ure2p, suggesting that the Ure2p PFD can promiscuously interact with compositionally similar PFDs during prion formation. When we searched the yeast proteome for proteins with regions of high compositional similarity to Ure2p, four of the top five proteins were able to efficiently stimulate [URE3] formation. However, there were limits to this promiscuity; overexpression of wild-type or scrambled Sup35 PFDs did not increase [URE3] levels. We propose that this ability to promiscuously interact may have evolved as a mechanism to regulate Ure2p activity and/or prion formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号