首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   46篇
  449篇
  2021年   5篇
  2019年   4篇
  2018年   5篇
  2016年   8篇
  2015年   15篇
  2014年   12篇
  2013年   12篇
  2012年   22篇
  2011年   21篇
  2010年   14篇
  2009年   17篇
  2008年   27篇
  2007年   19篇
  2006年   15篇
  2005年   16篇
  2004年   14篇
  2003年   19篇
  2002年   11篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   11篇
  1991年   11篇
  1990年   4篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   8篇
  1984年   7篇
  1983年   11篇
  1982年   5篇
  1981年   3篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   3篇
  1975年   8篇
  1974年   5篇
  1973年   6篇
  1972年   5篇
  1968年   3篇
  1966年   2篇
  1964年   2篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
61.
62.
Allostery plays a crucial role in the mechanism of neurotransmitter-sodium symporters, such as the human dopamine transporter. To investigate the molecular mechanism that couples the transport-associated inward release of the Na+ ion from the Na2 site to intracellular gating, we applied a combination of the thermodynamic coupling function (TCF) formalism and Markov state model analysis to a 50-μs data set of molecular dynamics trajectories of the human dopamine transporter, in which multiple spontaneous Na+ release events were observed. Our TCF approach reveals a complex landscape of thermodynamic coupling between Na+ release and inward-opening, and identifies diverse, yet well-defined roles for different Na+-coordinating residues. In particular, we identify a prominent role in the allosteric coupling for the Na+-coordinating residue D421, where mutation has previously been associated with neurological disorders. Our results highlight the power of the TCF analysis to elucidate the molecular mechanism of complex allosteric processes in large biomolecular systems.  相似文献   
63.
Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.  相似文献   
64.
Assembly of the nuclear pore, gateway to the genome, from its component subunits is a complex process. In higher eukaryotes, nuclear pore assembly begins with the binding of ELYS/MEL-28 to chromatin and recruitment of the large critical Nup107-160 pore subunit. The choreography of steps that follow is largely speculative. Here, we set out to molecularly define early steps in nuclear pore assembly, beginning with chromatin binding. Point mutation analysis indicates that pore assembly is exquisitely sensitive to the change of only two amino acids in the AT-hook motif of ELYS. The dependence on AT-rich chromatin for ELYS binding is borne out by the use of two DNA-binding antibiotics. AT-binding Distamycin A largely blocks nuclear pore assembly, whereas GC-binding Chromomycin A(3) does not. Next, we find that recruitment of vesicles containing the key integral membrane pore proteins POM121 and NDC1 to the forming nucleus is dependent on chromatin-bound ELYS/Nup107-160 complex, whereas recruitment of gp210 vesicles is not. Indeed, we reveal an interaction between the cytoplasmic domain of POM121 and the Nup107-160 complex. Our data thus suggest an order for nuclear pore assembly of 1) AT-rich chromatin sites, 2) ELYS, 3) the Nup107-160 complex, and 4) POM121- and NDC1-containing membrane vesicles and/or sheets, followed by (5) assembly of the bulk of the remaining soluble pore subunits.  相似文献   
65.
Clathrin assembly lymphoid myeloid leukemia protein (CALM) is a clathrin assembly protein with a domain structure similar to the neuron-specific assembly protein AP180. We have previously found that CALM is expressed in neurons and present in synapses. We now report that CALM has a neuron-related function: it facilitates the endocytosis of the synaptic vesicle protein VAMP2 from the plasma membrane. Overexpression of CALM leads to the reduction of cell surface VAMP2, whereas knockdown of CALM by RNA interference results in the accumulation of surface VAMP2. The AP180 N-terminal homology (ANTH) domain of CALM is required for its effect on VAMP2 trafficking, and the ANTH domain itself acts as a dominant-negative mutant. Thus, our results reveal a role for CALM in directing VAMP2 trafficking during endocytosis.  相似文献   
66.
Although the family of genes encoding for olfactory receptors was identified more than 15 years ago, the difficulty of functionally expressing these receptors in an heterologous system has, with only some exceptions, rendered the receptive range of given olfactory receptors largely unknown. Furthermore, even when successfully expressed, the task of probing such a receptor with thousands of odors/ligands remains daunting. Here we provide proof of concept for a solution to this problem. Using computational methods, we tune an electronic nose to the receptive range of an olfactory receptor. We then use this electronic nose to predict the receptors' response to other odorants. Our method can be used to identify the receptive range of olfactory receptors, and can also be applied to other questions involving receptor–ligand interactions in non-olfactory settings.  相似文献   
67.
Phospholipase Cβ2 (PLCβ2) is a large, multidomain enzyme that catalyzes the hydrolysis of the signaling lipid phosphoinositol 4,5 bisphosphate (PIP2) to promote mitogenic and proliferative changes in the cell. PLCβ2 is activated by Gα and Gβγ subunits of heterotrimeric G proteins, as well as small G proteins and specific peptides. Activation depends on the nature of the membrane surface. Recent crystal structures suggest one model of activation involving the movement of a small autoinhibitory loop upon membrane binding of the enzyme. Additionally, solution studies indicate multiple levels of activation that involve changes in the membrane orientation as well as interdomain movement. Here, we review the wealth of biochemical studies of PLCβ2-G protein activation and propose a comprehensive model that accounts for both the crystallographic and solution results.  相似文献   
68.
The interpretation of experimental observations of the dependence of membrane protein function on the properties of the lipid membrane environment calls for a consideration of the energy cost of protein-bilayer interactions, including the protein-bilayer hydrophobic mismatch. We present a novel (to our knowledge) multiscale computational approach for quantifying the hydrophobic mismatch-driven remodeling of membrane bilayers by multihelical membrane proteins. The method accounts for both the membrane remodeling energy and the energy contribution from any partial (incomplete) alleviation of the hydrophobic mismatch by membrane remodeling. Overcoming previous limitations, it allows for radially asymmetric bilayer deformations produced by multihelical proteins, and takes into account the irregular membrane-protein boundaries. The approach is illustrated by application to two G-protein coupled receptors: rhodopsin in bilayers of different thickness, and the serotonin 5-HT2A receptor bound to pharmacologically different ligands. Analysis of the results identifies the residual exposure that is not alleviated by bilayer adaptation, and its quantification at specific transmembrane segments is shown to predict favorable contact interfaces in oligomeric arrays. In addition, our results suggest how distinct ligand-induced conformations of G-protein coupled receptors may elicit different functional responses through differential effects on the membrane environment.  相似文献   
69.
A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential.  相似文献   
70.
Trichoderma asperellum and cucumber seedlings were used as a model to study the modulation of Trichoderma gene expression during plant root colonization. Seedlings were grown in an aseptic hydroponics medium and inoculated with Trichoderma spore suspension. Proteins differentially secreted into the medium were isolated. Three major proteins of fungal origin were identified: two arabinofuranosidases (Abf1 and Abf2) and an aspartyl protease. Differential mRNA display was conducted on Trichoderma mycelia interacting and non-interacting, with the plant roots. Among the differentially regulated clones another aspartyl protease was identified. Sequencing of the genes revealed that the first aspartyl protease is a close homologue of PapA from T. harzianum and the other, of AP1 from Botryotinia fuckeliana. RT-PCR analysis confirms that the proteases are induced in response to plant roots attachment and are expressed in planta. papA, but not papB, is also induced in plate confrontation assays with the plant pathogen Rhizoctonia solani. These data suggest that the identified proteases play a role in Trichoderma both as a mycoparasite and as a plant opportunistic symbiont.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号