首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
  88篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   10篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1994年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
31.
Growing concerns about energy security and climate change have prompted interest in Australia and worldwide to look for alternatives of fossil fuels. Among the renewable fuel sources, biofuels are one such alternative that have received unprecedented attention in the past decade. Cellulosic biofuels, derived from agricultural and wood biomass, could potentially increase Australia's oil self‐sufficiency. In this study, we carry out a hybrid life‐cycle assessment (LCA) of a future cellulose‐refining industry located in the Green Triangle region of South Australia. We assess both the upstream and downstream refining stages, and consider as well the life‐cycle effects occurring in conventional industries displaced by the proposed biofuel supply chains. We improve on conventional LCA method by utilising multi‐region input–output (IO) analysis that allows a comprehensive appraisal of the industry's supply chains. Using IO‐based hybrid LCA, we evaluate the social, economic and environmental impacts of lignocellulosic biofuel production. In particular, we evaluate the employment, economic stimulus, energy consumption and greenhouse gas impacts of the biofuel supply chain and also quantify the loss in economic activity and employment in the paper, pulp and paperboard industry resulting from the diversion of forestry biomass to biofuel production. Our results reveal that the loss in economic activity and employment will only account for 10% of the new jobs and additional stimulus generated in the economy. Lignocellulosic biofuel production will create significant new jobs and enhance productivity and economic growth by initiating the growth of new industries in the economy. The energy return on investment for cellulosic biofuel production lies between 2.7 and 5.2, depending on the type of forestry feedstock and the travel distance between the feedstock industry and the cellulose refinery. Furthermore, the biofuel industry will be a net carbon sequester.  相似文献   
32.
33.
34.
The molecular mechanisms regulating the sexual development of malaria parasites from gametocytes to oocysts in their mosquito vector are still largely unexplored. In other eukaryotes, NIMA-related kinases (Neks) regulate cell cycle progression and have been implicated in the regulation of meiosis. Here, we demonstrate that Nek-4, a new Plasmodium member of the Nek family, is essential for completion of the sexual cycle of the parasite. Recombinant Plasmodium falciparum Nek-4 possesses protein kinase activity and displays substrate preferences similar to those of other Neks. Nek-4 is highly expressed in gametocytes, yet disruption of the nek-4 gene in the rodent malaria parasite P. berghei has no effect on gamete formation and subsequent fertilization. However, further differentiation of zygotes into ookinetes is abolished. Measurements of nuclear DNA content indicate that zygotes lacking Nek-4 fail to undergo the genome replication to the tetraploid level that precedes meiosis. Cell cycle progression in the zygote is identified as a likely precondition for its morphological transition to the ookinete and for the successful establishment of a malaria infection in the mosquito.  相似文献   
35.
Eukaryotic initiation factor 6 (eIF6), a highly conserved protein from yeast to mammals, is essential for 60 S ribosome biogenesis and assembly. Both yeast and mammalian eIF6 are phosphorylated at Ser-174 and Ser-175 by the nuclear isoform of casein kinase 1 (CK1). The molecular basis of eIF6 phosphorylation, however, remains elusive. In the present work, we show that subcellular distribution of eIF6 in the nuclei and the cytoplasm of mammalian cells is mediated by dephosphorylation and phosphorylation, respectively. This nucleo-cytoplasmic shuttling is dependent on the phosphorylation status at Ser-174 and Ser-175 of eIF6. We demonstrate that Ca(2+)-activated calcineurin phosphatase binds to and promotes nuclear localization of eIF6. Increase in intracellular concentration of Ca(2+) leads to rapid translocation of eIF6 from the cytoplasm to the nucleus, an event that is blocked by specific calcineurin inhibitors cyclosporin A or FK520. Nuclear export of eIF6 is regulated by phosphorylation at Ser-174 and Ser-175 by the nuclear isoform of CK1. Mutation of eIF6 at the phosphorylatable Ser-174 and Ser-175 to alanine or treatment of cells with the CK1 inhibitor, D4476 inhibits nuclear export of eIF6 and results in nuclear accumulation of eIF6. Together, these results establish eIF6 as a substrate for calcineurin and suggest a novel paradigm for calcineurin function in 60 S ribosome biogenesis via regulating the nuclear accumulation of eIF6.  相似文献   
36.
37.
Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent.  相似文献   
38.
Since 1976 many studies have been reported on the occurrence and functional significance of ecto-protein kinases in a variety of cell types although their precise biochemical identity is largely unknown. This study reports for the first time purification to apparent homogeneity of an ecto-protein kinase (ecto-CIK) and some of its characteristics using caprine sperm as the cell model. The ecto-CIK is a unique membrane-specific serine/threonine protein kinase. It is a strongly basic 115 kDa protein made up of two subunits: 63 and 55 kDa. The ecto-kinase undergoes a remarkable lateral movement on the outer cell surface culminating in capping on the sperm acrosomal tip. MPS, its major protein substrate is also located on the acrosomal tip. Both ecto CIK and MPS serve as potential regulators of flagellar motility. This novel enzyme appears to be major kinase responsible for the reported regulation of mammalian cellular functions by modulating phosphorylation of the membrane-bound proteins.  相似文献   
39.
Summary Pharmaceutically important γ-linolenic acid (GLA) was produced (4.1 mg g−1 dry wt) by laboratory grown cyanobacterium Fischerella sp. colonizing Neem (Azadirachta indica) tree bark. GLA isolated from the test cyanobacterium was active against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25992, Salmonella typhi (local strain), Pseudomonas aeruginosa ATCC 27853 and Enterobacter aerogenes MTCC 2822. The overproduction of GLA was also monitored by altering phosphate and nitrate levels in the nutrient medium. A doubling in phosphate concentration (58 μM) increased GLA level up to 12% over that of control cells while half of this phosphate level reduced GLA synthesis by 8%. In contrast, elevated nitrate concentrations (5 and 10 mM) stimulated biomass yield but not GLA, as the levels approximated to the nitrate-lacking control. The antibacterial potential of GLA from Fischerella sp. grown at varying P or N levels was at variance as evidenced by the diameter of inhibition zones against S. aureus. This variation in inhibition zones reflected differing levels of GLA as ascertained quantitatively by HPLC.  相似文献   
40.
The peptidyl transferase center, present in domain V of 23S rRNA of eubacteria and large rRNA of plants and animals, can act as a general protein folding modulator. Here we show that a few specific nucleotides in Escherichia coli domain V RNA bind to unfolded proteins and, as shown previously, bring the trapped proteins to a folding-competent state before releasing them. These nucleotides are the same for the proteins studied so far: bovine carbonic anhydrase, lactate dehydrogenase, malate dehydrogenase, and chicken egg white lysozyme. The amino acids that interact with these nucleotides are also found to be specific in the two cases tested: bovine carbonic anhydrase and lysozyme. They are either neutral or positively charged and are present in random coils on the surface of the crystal structure of both the proteins. In fact, two of these amino acid-nucleotide pairs are identical in the two cases. How these features might help the process of protein folding is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号