首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有66条查询结果,搜索用时 46 毫秒
11.
The toxicity of conventional nitroaromatic explosives like 2,4,6-trinitrotoluene (TNT) is caused by their enzymatic free radical formation with the subsequent oxidative stress, the formation of alkylating nitroso and/or hydroxylamino metabolites, and oxyhemoglobin oxidation into methemoglobin. In order to get an insight into the mechanisms of toxicity of the novel explosives NTO (5-nitro-1,2,4-triazol-3-one) and ANTA (5-nitro-1,2,4-triazol-3-amine), we examined their reactions with the single-electron transferring flavoenzymes NADPH: cytochrome P-450 reductase and ferredoxin:NADP+ reductase, two-electron transferring flavoenzymes mammalian NAD(P)H:quinone oxidoreductase (DT-diaphorase), and Enterobacter cloacae NAD(P)H:nitroreductase, and their reactions with oxyhemoglobin. The reactivity of NTO and ANTA in the above reactions was markedly lower than that of TNT. The toxicity of NTO and ANTA in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was partly prevented by desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea. This points to the involvement of oxidative stress in their cytotoxicity, presumably to the redox cycling of free radicals. The FLK cell line cytotoxicity and the methemoglobin formation in isolated human erythrocytes of NTO and ANTA were also markedly lower than those of TNT, and similar to those of nitrobenzene. Taken together, our data demonstrate that the low toxicity of nitrotriazole explosives may be attributed to their low electron-accepting properties.  相似文献   
12.
Hyaluronidase (E.C. 4.2.2.1 hyaluronate lyase) or Mu toxin is one of the main components ofClostridium perfringens toxin complex. Although this enzyme has been studied for many years, data on its physico-chemical and catalytic characteristics are still quite contradictory and lack lucidity and completeness. In order to update knowledge of enzymatic properties of clostridial hyaluronidase, a chromatographically purified preparation from C. perfringens type A BP6K free of side phospholipase C (alpha toxin), neuraminidase (sialidase) and collagenase (kappa toxin) activities was obtained and characterized. The purification procedure included the following steps: processing the culture liquid with calcium phosphate gel, precipitation of the enzyme with acetone, ultrafiltration, and chromatography on Sephadex G-100 column. The purified hyaluronidase was homogenous as judged by rechromatography, SDS-PAGE and isoelectric focusing. Being a glycoprotein, the enzyme was most active at pH 5.7–6.2 (depending on the nature of the buffer used), at temperatures 37–45°C and at a relatively high ionic strength (0.15 and higher). The hyaluronidase was unstable when at pH values below 5.0 and above 9.0 as well as at temperatures below 30°C and above 50°C. The enzyme was most sensitive to Cu2+, Pb2+and Al3+ions, while the inhibitory effect of EDTA was moderate. Molecular mass of hyaluronidase was 96kDa as estimated by gel filtration and 48kDa when estimated by SDS-PAGE, suggesting that enzyme is composed of two subunits. The isoelectric point of the enzyme was 4.4. Substrate specificity of the enzyme was narrow (appart from hyaluronate, it slightly split chondroitin, but did not split heparin and various chondroitinsulphates). Moreover, unsplit glycosaminoglycans appeared to be competitive inhibitors with Kivalues 5.3×10−2, 4.9×10−2, 4.5×10−2and 4.2×10−2mg/mL for heparin, chondroitinsulphates A, B and C, respectively. The Michaelis constant in regard to potassium hyaluronate was calculated to be (15.4±2.6)×10−2mg/mL.  相似文献   
13.
The prevalence of Helicobacter pylori is high in Eastern Europe. The purpose of this study was to estimate the prevalence of H. pylori in symptomatic Lithuanian children and to identify the infection by clinicopathological and serological analyses. One hundred sixteen symptomatic children (age 8-16) with gastritis and duodenal ulcer were included. Biopsies were histologically assessed according to the Sydney-System. Serum IgG antibodies against H. pylori were detected by an enzyme-linked immunosorbent assay (ELISA), using low molecular mass antigen. The western blot technique was used to detect serum antibodies against the cytotoxin-associated protein (CagA) using whole cell antigen. Histologically the prevalence of H. pylori infection was 79% and not influenced by demographic factors. Mucosal inflammation and atrophy were associated with a H. pylori infection. Intestinal metaplasia was found in eight children, suggesting early H. pylori acquisition in life. Increased levels of IgG antibodies were detected in 57% of children. The prevalence of IgG antibodies was significantly higher in patients with duodenal ulcer compared to children with gastritis. Forty-four (67%) H. pylori-seropositive children had antibodies against CagA. Low molecular weight-ELISA and whole cell-western blot results were significantly associated with histopathology, the presence of duodenal ulcer and the CagA status. A high number of false seronegative cases were due to poor immunological responses in children and poor locally validated tests. The prevalence of H. pylori infection in Lithuanian children is higher compared to Western Europe. The infection is acquired in early life. Diagnosing H. pylori infection, serology is helpful, but endoscopy/histology remains as gold standard.  相似文献   
14.
BACKGROUND: Our previous studies have shown that muscle-derived cells, including a population of muscle stem cells, transduced with a retroviral vector expressing bone morphogenetic protein 4 (BMP4) can improve the healing of critical-size calvarial defects. However, we did not evaluate the functionality of the healed bone. The purpose of this study was to determine whether primary muscle-derived cells transduced with retroBMP4 can heal a long bone defect both structurally and functionally. METHODS: Primary muscle-derived cells were genetically engineered to express BMP4 and were implanted into 7-mm femoral defects created in syngeneic rats. Muscle-derived cells transduced with retroLacZ were used in the control group. Bone healing was monitored by radiography, histology, and biomechanical testing at designated time points. RESULTS: Most of the defects treated with muscle-derived cells expressing BMP4 formed bridging callous by 6 weeks after surgery, and exhibited radiographically evident union at 12 weeks after cell implantation. Histological analysis at 12 weeks revealed that the medullary canal of the femur was restored and the cortex was remodeled between the proximal and distal ends of each BMP4-treated defect. In contrast, the defects treated with muscle-derived cells expressing beta-galactosidase displayed nonunion at all tested time points. An evaluation of the maximum torque-to-failure in the treatment group indicated that the healed bones possessed 77 +/- 28% of the strength of the contralateral intact femora. Torsional stiffness and energy-to-failure were not significantly different between the treated and intact limbs. CONCLUSIONS: This study demonstrated that primary muscle-derived cells transduced with retroBMP4 can elicit both structural and functional healing of critical-size segmental long bone defects created in rats.  相似文献   
15.
Because metaplastic carcinoma of the breast encompasses a great variety of histopathology, diagnostic challenges abound, especially within the realm of cytology. The authors compiled and studied an eight-case series comprised of metaplastic breast carcinomas and lesions initially suspicious cytologically for metaplastic carcinoma in order to assess the degree of cytologic-histologic correlation and to identify recurring problematic themes surrounding the cytology-based diagnosis of this neoplasm. The cytologic and histologic slides from eight cases suspicious for metaplastic breast carcinoma diagnosed by fine needle aspiration (FNA) were collected and analyzed through a seven-year retrospective search of case files at our institution. Based on cytologic characteristics, the cases were separated into three groups. Group 1 consisted of three cases presenting with poorly differentiated adenocarcinoma and squamoid components on FNA. Group 2 was composed of two cases that featured a monophasic, malignant ductal cell population on cytology, while the cytologic specimens for the third group of cases presented with a mesenchymal component with or without a malignant glandular constituent. Cytologic-histologic correlation was present in two of three cases demonstrating a mesenchymal component, and there was 100% sensitivity in the cytologic detection of those mesenchymal elements. However, in only one of three cases was there an accurate cytologic diagnosis of metaplastic carcinoma when squamoid changes were present on FNA. Both cases demonstrating only malignant glandular elements on cytologic specimens revealed an additional component of malignant squamous differentiation upon the examination of mastectomy-derived tissue. These results indicate that squamous-like changes identified on FNA should be interpreted with caution and that sampling error remains a problematic recurrence in cytology. Regardless, there appears to be promise concerning the accurate cytologic diagnosis of metaplastic carcinoma when the lesion is characterized by a mesenchymal component. A study implementing a larger case number is essential in determining the significance of these findings.  相似文献   
16.
The quantum mechanical self-assembly of two separate photoactive supramolecular systems with different photosynthetic centers was investigated by means of density functional theory methods. Quantum entangled energy transitions from one subsystem to the other and the assembly of logically controlled artificial minimal protocells were modeled. The systems studied were based on different photoactive sensitizer molecules covalently bonded to a non-canonical oxo-guanine::cytosine supramolecule with the precursor of a fatty acid (pFA) molecule attached via Van der Waals forces, all surrounded by water molecules. The electron correlation interactions responsible for the weak hydrogen and Van der Waals chemical bonds increased due to the addition of polar water solvent molecules. The distances between the separated sensitizer, nucleotide, pFA, and water molecules are comparable to Van der Waals and hydrogen bonding radii. As a result, the overall system becomes compressed, resulting in photo-excited electron tunneling from the sensitizer (bis(4-diphenylamine-2-phenyl)-squarine or 1,4-bis(N,N-dimethylamino)naphthalene) to the pFA molecules. Absorption spectra as well as electron transfer trajectories associated with the different excited states were calculated using time dependent density functional theory methods. The results allow separation of the quantum entangled photosynthetic transitions within the same minimal protocell and with the neighboring minimal protocell. The transferred electron is used to cleave a “waste” organic molecule resulting in the formation of the desired product. A two variable, quantum entangled AND logic gate was proposed, consisting of two input photoactive sensitizer molecules and one output (pFA molecule). It is proposed that a similar process might be applied for the destruction of tumor cancer cells or to yield building blocks in artificial cells.  相似文献   
17.
Human muscle-derived progenitor cells (hMDPCs) offer great promise for muscle cell-based regenerative medicine; however, prolonged ex-vivo expansion using animal sera is necessary to acquire sufficient cells for transplantation. Due to the risks associated with the use of animal sera, the development of a strategy for the ex vivo expansion of hMDPCs is required. The purpose of this study was to investigate the efficacy of using platelet-rich plasma (PRP) for the ex-vivo expansion of hMDPCs. Pre-plated MDPCs, myoendothelial cells, and pericytes are three populations of hMDPCs that we isolated by the modified pre-plate technique and Fluorescence Activated Cell Sorting (FACS), respectively. Pooled allogeneic human PRP was obtained from a local blood bank, and the effect that thrombin-activated PRP-releasate supplemented media had on the ex-vivo expansion of the hMDPCs was tested against FBS supplemented media, both in vitro and in vivo. PRP significantly enhanced short and long-term cell proliferation, with or without FBS supplementation. Antibody-neutralization of PDGF significantly blocked the mitogenic/proliferative effects that PRP had on the hMDPCs. A more stable and sustained expression of markers associated with stemness, and a decreased expression of lineage specific markers was observed in the PRP-expanded cells when compared with the FBS-expanded cells. The in vitro osteogenic, chondrogenic, and myogenic differentiation capacities of the hMDPCs were not altered when expanded in media supplemented with PRP. All populations of hMDPCs that were expanded in PRP supplemented media retained their ability to regenerate myofibers in vivo. Our data demonstrated that PRP promoted the proliferation and maintained the multi-differentiation capacities of the hMDPCs during ex-vivo expansion by maintaining the cells in an undifferentiated state. Moreover, PDGF appears to be a key contributing factor to the beneficial effect that PRP has on the proliferation of hMDPCs.  相似文献   
18.
Pathology has recently entered the era of personalized medicine. This brings new expectations for the accuracy and precision of tissue-based diagnosis, in particular, when quantification of histologic features and biomarker expression is required. While for many years traditional pathologic diagnosis has been regarded as ground truth, this concept is no longer sufficient in contemporary tissue-based biomarker research and clinical use. Another major change in pathology is brought by the advancement of virtual microscopy technology enabling digitization of microscopy slides and presenting new opportunities for digital image analysis. Computerized vision provides an immediate benefit of increased capacity (automation) and precision (reproducibility), but not necessarily the accuracy of the analysis. To achieve the benefit of accuracy, pathologists will have to assume an obligation of validation and quality assurance of the image analysis algorithms. Reference values are needed to measure and control the accuracy. Although pathologists' consensus values are commonly used to validate these tools, we argue that the ground truth can be best achieved by stereology methods, estimating the same variable as an algorithm is intended to do. Proper adoption of the new technology will require a new quantitative mentality in pathology. In order to see a complete and sharp picture of a disease, pathologists will need to learn to use both their analogue and digital eyes.  相似文献   
19.
20.
Type II restriction endonucleases (REases) are one of the basic tools of recombinant DNA technology. They also serve as models for elucidation of mechanisms for both site-specific DNA recognition and cleavage by proteins. However, isolation of catalytically active mutants from their libraries is challenging due to the toxicity of REases in the absence of protecting methylation, and techniques explored so far had limited success. Here, we present an improved SOS induction-based approach for in vivo screening of active REases, which we used to isolate a set of active variants of the catalytic mutant, Cfr10IE204Q. Detailed characterization of plasmids from 64 colonies screened from the library of ∼200 000 transformants revealed 29 variants of cfr10IR gene at the level of nucleotide sequence and 15 variants at the level of amino acid sequence, all of which were able to induce SOS response. Specific activity measurements of affinity-purified mutants revealed >200-fold variance among them, ranging from 100% (wild-type isolates) to 0.5% (S188C mutant), suggesting that the technique is equally suited for screening of mutants possessing high or low activity and confirming that it may be applied for identification of residues playing a role in catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号