首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   83篇
  2021年   8篇
  2019年   8篇
  2018年   11篇
  2017年   13篇
  2016年   13篇
  2015年   16篇
  2014年   27篇
  2013年   41篇
  2012年   50篇
  2011年   42篇
  2010年   22篇
  2009年   25篇
  2008年   27篇
  2007年   34篇
  2006年   42篇
  2005年   32篇
  2004年   34篇
  2003年   33篇
  2002年   35篇
  2001年   37篇
  2000年   22篇
  1999年   18篇
  1998年   5篇
  1997年   9篇
  1996年   6篇
  1995年   11篇
  1994年   9篇
  1993年   6篇
  1992年   12篇
  1991年   10篇
  1990年   18篇
  1989年   15篇
  1988年   10篇
  1987年   13篇
  1986年   19篇
  1985年   8篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1980年   5篇
  1979年   9篇
  1978年   13篇
  1977年   6篇
  1976年   5篇
  1975年   7篇
  1974年   12篇
  1973年   12篇
  1972年   5篇
  1969年   5篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
91.
Progesterone-receptor (PR) stimulation promotes survival in rat and human periovulatory granulosa cells. To investigate the mechanisms involved, periovulatory rat granulosa cells were incubated in vitro with or without the PR-antagonist Org 31710. Org 31710 caused the expected increase in apoptosis, and expression profiling using cDNA microarray analysis revealed regulation of several groups of genes with functional and/or metabolic connections. This regulation included decreased expression of genes involved in follicular rupture, increased stress responses, decreased angiogenesis, and decreased cholesterol synthesis. A decreased cholesterol synthesis was verified in experiments with both rat and human periovulatory granulosa cells treated with the PR-antagonists Org 31710 or RU 486 by measuring incorporation of [14C]acetate into cholesterol, cholesterol ester, and progesterone. Correspondingly, specific inhibition of cholesterol synthesis in periovulatory rat granulosa cells using 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (lovastatin, mevastatin, or simvastatin) increased apoptosis, measured as DNA fragmentation and caspase-3/7 activity. The increase in apoptosis caused by simvastatin was reversed by addition of the cholesterol synthesis-intermediary mevalonic acid. These results show that PR antagonists reduce cholesterol synthesis in periovulatory granulosa cells and that cholesterol synthesis is important for granulosa cell survival.  相似文献   
92.

Background  

Obesity causes or exacerbates a host of medical conditions, including cardiovascular, pulmonary, and endocrine diseases. Recently obesity in elderly women was associated with greater risk of dementia, white matter ischemic changes, and greater brain atrophy. The purpose of this study was to determine whether body type affects global brain volume, a marker of atrophy, in middle-aged men and women.  相似文献   
93.
The influence of protein stability on the adsorption and desorption behavior to surfaces with fundamentally different properties (negatively charged, positively charged, hydrophilic, and hydrophobic) was examined by surface plasmon resonance measurements. Three engineered variants of human carbonic anhydrase II were used that have unchanged surface properties but large differences in stability. The orientation and conformational state of the adsorbed protein could be elucidated by taking all of the following properties of the protein variants into account: stability, unfolding, adsorption, and desorption behavior. Regardless of the nature of the surface, there were correlation between (i) the protein stability and kinetics of adsorption, with an increased amplitude of the first kinetic phase of adsorption with increasing stability; (ii) the protein stability and the extent of maximally adsorbed protein to the actual surface, with an increased amount of adsorbed protein with increasing stability; (iii) the protein stability and the amount of protein desorbed upon washing with buffer, with an increased elutability of the adsorbed protein with increased stability. All of the above correlations could be explained by the rate of denaturation and the conformational state of the adsorbed protein. In conclusion, protein engineering for increased stability can be used as a strategy to decrease irreversible adsorption on surfaces at a liquid-solid interface.  相似文献   
94.
G-protein-coupled receptors (GPCRs) constitute one of the most important classes of drug targets. Since the first high-resolution structure of a GPCR was determined by Palczewski and co-workers [K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I. Le Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto, M. Miyano, Crystal structure of rhodopsin: a G-protein-coupled receptor, Science 289 (2000) 739-745], development of in silico models of rhodopsin-like GPCRs could be rationally founded. In this work, we present a model of the human gonadotropin-releasing hormone receptor based on the rhodopsin structure. The transmembrane helices are modeled by homology, while the extra- and intra-cellular loops are modeled in such a way that experimentally determined interactions and microdomains (e.g., hydrophobic cores) are retained. We conclude that specifically tailored models, compared to more automatic approaches, have the benefit that known interactions are easily introduced early in the homology modeling. Furthermore, tailored models, although more tedious to construct, are better suited for drug lead finding and for compound optimization. To test the stability of the receptor, we performed a 1 ns molecular dynamics simulation. Moreover, we docked two agonists (native GnRH and Triptorelin, [dTrp(6)]-GnRH) and two antagonists (Cetrorelix, dNal(1)-dCpa(2)-dPal(3)-Ser(4)-Tyr(5)-dCit(6)-Leu(7)-Arg(8)-Pro(9)-dAla(10)), and the covalently constrained dicyclic decapeptide dicyclo(1,1'-5/4-10)[Ac-Glu(1)(Gly(1)')-dCpa(2)-dTrp(3)-Asp(4)-dbu(5)-dNal(6)-Leu(7)-Arg(8)-Pro(9)-dpr(10)-NH(2)] into the putative receptor binding site. The docked ligand conformations result in ligand-receptor interactions that are generally in good agreement with site-directed mutagenesis and ligand-binding studies presented in the literature. Our results indicate that the binding conformation of the antagonists differs from that of the agonists. This difference can be linked to the activation or inhibition of the receptor.  相似文献   
95.
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.  相似文献   
96.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   
97.
We investigate the issue of end versus side branching of actin filaments by Arp2/3 complex, using a combination of analytic theory, polymerization assays, and quantitative modeling. The analytic theory shows that the effect of capping protein on the initial stages of actin polymerization in the presence of Arp2/3 complex depends strongly on whether new Arp2/3 complex-induced branches grow from the sides or ends of existing filaments. Motivated by these results, we measure and quantitatively model the kinetics of actin polymerization in the presence of activated Arp2/3 complex, for a range of concentrations of capping protein. Our model includes the most important types of events involving actin and actin-binding proteins, and can be adjusted to include end branching, side branching, or both. The side-branching model gives a better fit to the experimental data than the end-branching model. An end-plus-side model including both types of branching gives a moderate improvement in the quality of the fit. Another side-branching model, based on aging of subunits' capacity for branch formation, gives a significantly better fit than the end-plus-side model. We discuss implications for actin polymerization in cells.  相似文献   
98.
Both deleterious mutations and parasites have been acknowledged as potential selective forces responsible for the evolutionary maintenance of sexual reproduction. The pluralist approach to sex proposes that these two factors may have to interact synergistically in order to stabilize sex, and one of the simplest ways this could occur is if parasites are capable of causing synergistic epistasis between mutations in their hosts. However, the effects of both deleterious mutations and parasitism are known to be influenced by a range of environmental factors, so the nature of the interaction may depend upon the organisms' environment. Using chemically mutated Daphnia magna lines, we examined the effects of mutation and parasitism under a range of temperature and food regimes. We found that although parasites were capable of causing synergistic epistasis between mutations in their hosts, these effects were dependent upon an interaction between parasite genotype and temperature.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号