首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   18篇
  2023年   1篇
  2022年   7篇
  2021年   14篇
  2020年   3篇
  2019年   4篇
  2018年   12篇
  2017年   8篇
  2016年   14篇
  2015年   20篇
  2014年   18篇
  2013年   31篇
  2012年   35篇
  2011年   41篇
  2010年   23篇
  2009年   30篇
  2008年   26篇
  2007年   32篇
  2006年   23篇
  2005年   18篇
  2004年   22篇
  2003年   18篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   10篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有460条查询结果,搜索用时 31 毫秒
71.

Background  

Chlamydia trachomatis infection of the female genital tract can lead to serious sequelae resulting in fertility related disorders. Little is known about the mechanism leading to Chlamydia induced pathology and factors responsible for it. As only some of the women develops reproductive disorders while majority of the women clears infection without any severe sequalae, mucosal immune response in women with or without fertility disorders was studied to identify factors which may lead to final clinical outcome of chlamydial infection.  相似文献   
72.
Metabolites of lutein are highly concentrated in the human macula and are known to provide protection against age-related macular degeneration. The aim of this investigation was to characterize the in vitro oxidation products of lutein obtained through photo-oxidation and to compare them with biologically transformed dietary lutein in intestine, plasma, liver, and eyes of rats. In vivo studies involved feeding rats a diet devoid of lutein for 2 weeks to induce deficiency. Rats were divided into two equal groups (n=6/group) and received either micellar lutein by gavage for 10 days or diet supplemented with fenugreek leaves as a lutein source for 4 weeks. Lutein metabolites/oxidation products obtained from in vivo and in vitro studies were characterized by HPLC and LC-MS (APCI) techniques to elucidate their structure. The characteristic fragmented ions resulting from photo-oxidation of lutein were identified as 523 (M(+)+H(+)-3CH(3)), 476 (M(+)+H(+)-6CH(3)), and 551 (M(+)+H(+)-H(2)O). In the eyes, the fragmented molecules resulting from lutein were 13-Z lutein, 13'-Z lutein, 13-Z zeaxanthin, all-E zeaxanthin, 9-Z lutein, 9'-Z lutein, and 3'-oxolutein. Epoxycarotenoids were identified in liver and plasma, whereas anhydrolutein was identified in intestine. This study emphasizes the essentiality of dietary lutein to maintain its status in the retina.  相似文献   
73.

Background  

Allergic subjects produce relatively low amounts of IFN-γ, a pleiotropic Th-1 cytokine that downregulates Th2-associated airway inflammation and hyperresponsiveness (AHR), the hallmarks of allergic asthma. Adenovirus-mediated IFN-γ gene transfer reduces AHR, Th2 cytokine levels and lung inflammation in mice, but its use would be limited by the frequency of gene delivery required; therefore, we tested chitosan/IFN-γ pDNA nanoparticles (CIN) for in situ production of IFN-γ and its in vivo effects.  相似文献   
74.
75.
76.
In the present investigation, we determined the chemotherapeutic efficacy of 9‐bromonoscapine (Br‐Nos), a more potent noscapine analog, on MCF10A, spontaneously immortalized human normal breast epithelial cells and MCF10A‐CSC3, cigarette smoke condensate (CSC)‐transformed cells. The results from cytogenetic analysis showed that Br‐Nos induced polyploidy and telomeric association in MCF10A‐CSC3 cells, while MCF10A cells remained unaffected. Our immunofluorescence data further demonstrated that MCF10A‐CSC3 cells were susceptible to mitotic catastrophe on exposure to Br‐Nos and failed to recover after drug withdrawal. MCF10A‐CSC3 cells exhibited Br‐Nos‐induced aberrant multipolar spindle formation, which irreversibly impaired the alignment of replicated chromosome to the equatorial plane and finally culminated in cell death. Although MCF10A cells upon Br‐Nos treatment showed bipolar spindles with some uncongressed chromosomes, these cells recovered fairly well after drug withdrawal. Our flow‐cytometry analysis data reconfirmed that MCF10A‐CSC3 cells were more susceptible to cell death compared to MCF10A cells. Furthermore, our results suggest that decreased levels of cdc2/cyclin B1 and cdc2 kinase activity are responsible for Br‐Nos‐induced mitotic cell arrest leading to cell death in MCF10A‐CSC3 cells. This study thus explores the underlying mechanism of Br‐Nos‐induced mitotic catastrophe in CSC‐transformed MCF10A‐CSC3 cells and its potential usefulness as a chemotherapeutic agent for prevention of cigarette smoke‐induced breast cancer growth. J. Cell. Biochem. 106: 1146–1156, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
77.
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein that plays a crucial role in virus infectivity. In this study, using the mesogenic strain Beaudette C (BC), we mutated three conserved amino acids thought to be part of the binding/catalytic active site in the HN protein. We also mutated five additional residues near the proposed active site that are nonconserved between BC and the avirulent strain LaSota. The eight recovered NDV HN mutants were assessed for effects on biological activities. While most of the mutations had surprisingly little effect, mutation at conserved residue Y526 reduced the neuraminidase, receptor binding, and fusion activities and attenuated viral virulence in eggs and young birds.Newcastle disease virus (NDV) is an avian pathogen of the genus Avulavirus in the family Paramyxoviridae (10). The envelope of NDV contains two surface glycoproteins, the fusion (F) protein and the HN (hemagglutinin-neuraminidase [NA]) protein. The F protein mediates viral penetration and requires cleavage-activation by host protease. Cleavability of the F protein is a major determinant of virulence. However, other viral proteins, including HN, also contribute to virulence (5). HN is a multifunctional glycoprotein. It recognizes sialic acid-containing receptors on cell surfaces; promotes the fusion activity of F protein, thereby allowing the virus to penetrate the cell surface; and acts as an NA that removes sialic acid from progeny virus particles to prevent viral self-aggregation (9).HN is a type II homotetrameric glycoprotein with a monomer length of 577 amino acids for most NDV strains (14). The ectodomain of the HN protein consists of a 95-amino-acid stalk region supporting a 428-amino-acid terminal globular head. Although mutations in the transmembrane and stalk regions of the HN protein can affect the structure and activities of the protein (11, 15), the antigenic, receptor recognition, and NA active sites are all localized in the globular head (12, 16). The X-ray crystal structure of the globular head of the NDV HN protein has identified residues that appear to contribute to receptor recognition, NA, and fusion activities (4). Previous studies have proposed that conserved residues R174, I175, D198, K236, R416, R498, Y526, and E547 are important in receptor recognition and NA activities and that residues R174 and E547 influence the fusion promotion activity of the HN protein (3, 4, 6). Although transfection studies using plasmids expressing HN mutants of NDV have highlighted the importance of these residues in different biological functions of the HN protein, their contribution to NDV biology and pathogenesis in the context of the complete virus was not known.In this study, we examined the roles of three of the above-named conserved residues, R416, R498, and Y526 (all located near the sialic acid binding site), in the biological activities and pathogenesis of the HN protein of NDV in the context of infectious virus. In addition, comparison of the HN protein sequence between the avirulent strain LaSota and the moderately virulent strain Beaudette C (BC) identified 12 amino acid differences in the globular head region of the HN protein (H203, T214, I219, S228, L269, A271, E293, G310, S494, E495, T502, and N568, named according to the BC amino acid assignment). We also examined five of these nonconserved residues, T214, I219, S494, E495, and N568, located in close proximity to residues identified earlier by crystal structure studies, to determine whether these might affect HN function and contribute to the difference in pathogenicity between the LaSota and BC strains (Fig. (Fig.11).Open in a separate windowFIG. 1.Three-dimensional structure of the NDV HN protein showing the positions of amino acid residues that were substituted in the present study. The residues are shown in space-filling mode and represented in different colors. The MacPymol (DeLano Scientific) software was used to generate the model of the globular domain of the NDV HN monomer. The structure was derived from the crystal structure of the NDV HN protein reported by Crennell et al. (4).We used site-directed mutagenesis (2) to introduce individual amino acid substitutions into a cDNA of the HN gene of strain BC. For the conserved residues, we changed arginine at positions 416 and 498 and tyrosine at position 526 to polar glutamine. For the nonconserved residues, the assignments T214, I219, S494, E495, and N568 of strain BC were altered to the corresponding assignments of strain LaSota: S214, V219, G494, V495, and D568, respectively. Each mutagenized HN gene was then inserted into a full-length cDNA clone of the BC antigenome. These clones were transfected into HEp2 cells, and mutant viruses were recovered as previously described (8). These viruses were designated according to the substitutions introduced: T214S, I219V, R416Q, S494G, E495V, R498Q, Y526Q, and N568D. The HN genes from recovered viruses were sequenced. This confirmed the presence of each introduced mutation and the lack of adventitious mutations in the HN gene. To determine the stability of each HN mutation, the recovered viruses were passaged five times in 9-day-old embryonated chicken eggs and five times in chicken embryo fibroblast DF-1 cells. Sequence analysis of the HN gene of the mutant viruses at each passage showed that the introduced mutations were unaltered (data not shown). To rule out the possibility that change in the HN protein sequence could be compensated for by a mutation in the F protein, the F gene from each recovered virus was sequenced. No compensatory mutations in the F gene were observed (data not shown). The HN protein content of each mutant virus, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie staining, was very similar to that of the parental BC virus (pBC) (Table (Table1).1). The multicycle growth kinetics of the recombinant HN mutant viruses in DF-1 cells (Fig. (Fig.2)2) showed that the replication kinetics of all of the HN mutant viruses were similar to those of pBC, with the exception of the Y526Q mutant, which showed delayed growth and had a lower virus yield (1.5 to 2.0 log10 PFU/ml) than the parental and other mutant viruses. In addition, the Y526Q mutant produced syncytia at 72 h, whereas the parental and other mutant viruses initiated syncytia at 24 h postinfection. These studies showed the importance of amino acid residue Y526 at the active site of the HN protein of NDV.Open in a separate windowFIG. 2.Multicycle growth kinetics of HN mutants of NDV in chicken embryo fibroblast (DF-1) cells. Cells were infected with the indicated parental or mutant virus at an multiplicity of infection of 0.01. Supernatant samples were collected at 8-h intervals until 64 h postinfection, and virus titers were determined at different time points by plaque assay. Values are averages from three independent experiments.

TABLE 1.

Biological activities of HN mutants of NDV
VirusExpressionaCell surface expressionbNA activitycHAd activitycFusiond
pBC100.00100.00100.00100.00100.00
T214S mutant110.1 ± 15.5102.5 ± 4.9109.1 ± 8.399.1 ± 8.2101.5 ± 4.2
I219V mutant105.8 ± 5.2100.1 ± 2.8112.2 ± 9.299.3 ± 9.592.9 ± 5.4
R416Q mutant101.2 ± 6.399.5 ± 2.5106.5 ± 9.1101.0 ± 9.190.6 ± 4.3
S494G mutant110.3 ± 12.5105.7 ± 6.587.6 ± 6.2103.2 ± 7.599.1 ± 2.4
E495V mutant106.1 ± 12.2101.2 ± 3.294.4 ± 3.1101.1 ± 7.289.2 ± 4.5
R498Q mutant108.5 ± 13.9106.9 ± 8.1102.8 ± 5.4101.8 ± 8.8102.0 ± 6.2
Y526Q mutant112.2 ± 15.6103.9 ± 4.166.2 ± 4.270.0 ± 4.150.4 ± 3.1
N568D mutant105.1 ± 7.898.9 ± 2.1102.5 ± 8.1103.7 ± 7.187.4 ± 5.2
Open in a separate windowaShown is the HN protein content of purified virus relative to that of the pBC parent determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie staining. All values are averages ± standard deviations of three independent experiments.bShown are the cell surface expression levels of HN mutants relative to the level of the pBC parent. Expression of the HN protein was quantitated by Western blot analysis using HN-specific monoclonal antibodies. All values are averages ± standard deviations of three independent experiments.cShown are the HAd and NA activities of HN mutants expressed as normalized values relative to the amount of HN expressed at the cell surface. Each value is relative to the activity of the pBC parent. All values are averages ± standard deviations of three independent experiments.dShown are the fusion promotion activity of HN mutants expressed relative to the activity of the pBC parent. Cell fusion was calculated as the ratio of the total number of nuclei in multinuclear cells to the total number of nuclei in the field. The values are averages ± standard deviations of three independent experiments.Next we analyzed whether the mutations in the HN protein modulated the biological activities of NDV in cultured cells (Table (Table1).1). Vero cells were infected with pBC or the HN mutant viruses, and cell surface expression was quantitated by Western blot analysis using HN-specific monoclonal antibodies. The amount of HN protein expressed on the cell surface by each mutant virus was similar to that of pBC. The NA activity of the mutant viruses was assayed by a fluorescence-based assay (13). The percent biological activity of each virus is shown relative to that of pBC, whose biological activities were considered to be 100%. The NA activity of the Y526Q mutant was 66% of that of pBC, which was the greatest reduction of all of the mutants, followed by 88% for the S494G virus. Hemadsorption (HAd) activity was assayed at 4°C by incubating the infected Vero cells with guinea pig red blood cells. The HAd activity of the Y526Q mutant was 70% of that of pBC, while the other mutants maintained HAd activity comparable to that of pBC. We also evaluated the fusion activity of each HN mutant virus in Vero cells (Table (Table1)1) by calculating the fusion index as described previously (7). The fusion activity of the Y526Q mutant virus was only 50% of that of pBC, followed by 89% for the E495V mutant. The other HN mutants did not have fusion activities different from that of pBC. These studies emphasize the importance of the tyrosine residue present at position 526, found near the sialic acid binding site of the HN protein of NDV, in fusion promotion and NA activities.To determine whether the differences in the in vitro biological characteristics of the Y526Q mutant virus resulted in decreased virulence in chickens in vivo, two internationally accepted pathogenicity tests were performed. The mean death time (MDT) test with 9-day-old embryonated chicken eggs was performed as described previously (1). The MDT was recorded as the time (in hours) for a minimum lethal dose of virus to kill all of the chicken embryos infected (Table (Table2).2). The MDT result showed a significant increase in the time required by the Y526Q HN mutant virus (98 h) to kill 9-day-old chicken embryos compared to that required for pBC (60 h), indicating a reduced virulence of the Y526Q mutant virus. The S494G HN mutant virus, involving a nonconserved residue, also had an MDT (70 h) slightly longer than that of pBC. The intracerebral pathogenicity index (ICPI) test was performed as described previously (1). Each virus was inoculated intracerebrally into groups of 10 1-day-old chicks. The birds were observed for paralysis and death once every 12 h for 8 days, and ICPI values were calculated (1). The ICPI values of both of these mutants were lower than that of pBC (Table (Table2).2). In aggregate, these results indicated that mutation of the residues at positions 526 and 494 attenuated the virus.

TABLE 2.

Pathogenicitya of HN mutants of NDV
VirusMDT (h)bICPI scorec
pBC581.51
T214S mutant59NDd
I219V mutant60ND
R416Q mutant59ND
S494G mutant701.36
E495V mutant58ND
R498Q mutant64ND
Y526Q mutant981.33
N568D mutant57ND
Open in a separate windowaThe virulence of the mutant and parental BC viruses was evaluated by MDT in 9-day-old chicken embryos and by ICPI in 1-day-old chickens.bThe MDT duration is >90 h for lentogenic strains, 60 to 90 h for mesogenic strains, and <60 h for velogenic strains.cThe ICPI values for velogenic strains approach the maximum score of 2.00, whereas lentogenic strains give values close to 0.dND, not determined.In summary, we investigated the importance of three conserved residues, namely, R416, R498, and Y526, which appear to be part of the active site of the HN protein (4). In the previous studies, mutation of R416 to Q or L essentially eliminated NA and strongly reduced or eliminated HAd activities in transfected cells, although effects on fusion activity were not evaluated (4, 6). Other substitutions at this position involving A, D, E, or K also strongly reduced both NA and HAd activities but resulted in only a marginal decrease in fusion activity (3). In contrast, in the present study, the R416Q mutation in the context of the complete infectious virus had little or no effect on the HAd, NA, and fusion activities and had no effect on pathogenicity as measured by MDT. In one previous study, mutation of R498 to Q resulted in a moderate reduction in NA activity and little effect on HAd activity when evaluated by cDNA transfection (4), whereas in other studies, mutation of R498 to Q or L had more-severe effects on NA and HAd activities (3, 6) but little effect on fusion activity (3). In contrast, in the present study, the same mutation in the context of infectious virus had little or no effect on HAd, NA, and fusion activities or on the MDT. Finally, when evaluated in previous work with transfected HN cDNA, mutation of Y526 to Q or L strongly reduced or eliminated both NA and HAd activities (4, 6). Fusion promotion was not measured in this previous study for the Y526Q mutant, but mutation to F or H, which also strongly inhibited NA and HAd activities, had no effect on fusion activity (3). In contrast, in the present study, the Y526Q mutation in the complete virus resulted in decreased HAd, NA, and fusion activities, as well as a reduction in pathogenicity. This highlighted the importance of residue Y526 in the biological activities of the HN protein. The various activities of the HN protein were much less sensitive to mutation when evaluated in the context of the complete virus than in the context of transfected cDNA. In addition, while there sometimes was dissociation of the NA, HAd, and fusion promotion activities in the transfected cDNA assay, it was not observed in the context of the complete mutant virus.Second, we investigated the functional importance of five other residues that differ between the lentogenic LaSota and mesogenic BC strains of NDV and are in close proximity to the above-mentioned conserved residues in the crystal structure. We found that mutations at these positions generally had little or no effect on the NA, HAd, or fusion promotion activity of the HN protein and did not alter the virulence of the virus. The one exception was the S494G mutation, which resulted in a modest reduction in NA activity and virulence. We previously showed that the HN protein of strain BC contributes to viral tropism and virulence, compared to strain LaSota (5). Thus, residue S494 may play a role in the difference between these two strains and may contribute to the tropism and virulence of the BC strain. This study indicates that mutating certain key amino acids in the globular head region of the NDV HN glycoprotein can attenuate the virulence of NDV and may provide a means to produce a live attenuated vaccine virus.  相似文献   
78.
A procedure for in vitro propagation of pharmaceutically valuable varieties of Caralluma adscendens from nodal explant, is described. The highest shoot multiplication with 80% frequency was achieved within one month on Murashige and Skoog’s medium supplemented with 8.87 μM BA. Shoot multiplication occurred in subsequent subcultures in culture bottles on MS medium. Regenerated shoots were rooted on half strength MS medium supplemented with NAA (0.54 μM) in all the three varieties. The rooted plants were hardened for establishment in soil.  相似文献   
79.
80.
Surface topography and compression elasticity of bovine cardiac muscle fibers in rigor and relaxing state have been studied with atomic force microscopy. Characteristic sarcomere patterns running along the longitudinal axis of the fibers were clearly observed, and Z-lines, M-lines, I-bands, and A-bands can be distinguished through comparing with TEM images and force curves. AFM height images of fibers had shown a sarcomere length of 1.22±0.02 μm (n=5) in rigor with a significant 9% increase in sarcomere length in relaxing state (1.33±0.03 μm, n=5), indicating that overlap moves with the changing physiological conditions. Compression elasticity curves along with sarcomere locations have been taken by AFM compression processing. Coefficient of Z-line, I-band, Overlap, and M-line are 25±2, 8±1, 10±1, and 17±1.5 pN/nm respectively in rigor state, and 18±2.5, 4±0.5, 6±1, and 11±0.5 pN/nm respectively in relaxing state. Young's Modulus in Z-line, I-band, Overlap, and M-line are 115±12, 48±9, 52±8, and 90±12 kPa respectively in rigor, and 98±10, 23±4, 42±4, and 65±7 kPa respectively in relaxing state. The elasticity curves have shown a similar appearance to the section analysis profile of AFM height images of sarcomere and the distance between adjacent largest coefficient and Young's Modulus is equal to the sarcomere length measured from the AFM height images using section analysis, indicating that mechanic properties of fibers have a similar periodicity to the topography of fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号