首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1772篇
  免费   108篇
  国内免费   1篇
  2022年   24篇
  2021年   46篇
  2020年   32篇
  2019年   34篇
  2018年   61篇
  2017年   40篇
  2016年   66篇
  2015年   78篇
  2014年   102篇
  2013年   127篇
  2012年   141篇
  2011年   142篇
  2010年   82篇
  2009年   69篇
  2008年   109篇
  2007年   103篇
  2006年   93篇
  2005年   75篇
  2004年   79篇
  2003年   63篇
  2002年   68篇
  2001年   21篇
  2000年   15篇
  1999年   17篇
  1998年   30篇
  1997年   5篇
  1996年   14篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1973年   3篇
  1972年   4篇
  1961年   2篇
  1960年   3篇
  1959年   4篇
  1958年   2篇
  1957年   7篇
排序方式: 共有1881条查询结果,搜索用时 331 毫秒
41.
42.
Myocardial infarction (MI) is a complex multi-factorial, polygenic disorder which results from an interaction between a person’s genetic makeup and various environmental factors. Nitric oxide (NO), a potent vasodilator produced by endothelial cells, plays an important role in the regulation of blood pressure, regional blood flow and also inhibits platelet aggregation, vascular smooth muscle cell proliferation and leukocyte adhesion to vascular endothelium. Our aim was to analyze the association of NOS3 (endothelial nitric oxide synthase 3) 894G>T and ?786T>C gene polymorphisms and MI risk in the South Indian population. A total of 287 MI patients, 279 risk control patients and 321 healthy controls were recruited for the retrospective study. Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). There was no significant association observed between NOS3 894G>T, ?786T>C polymorphisms and MI. A significant difference was observed in the distribution of GT genotype of the NOS3 894G>T polymorphism between the cases and the risk controls (p = 0.05) but the odds ratio (0.6) did not show risk for MI. The present study showed lack of association between NOS3 gene polymorphisms and MI in South Indian population.  相似文献   
43.
44.
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.Plant cells are surrounded by a flexible yet durable extracellular matrix that makes up the cell wall. This structure offers mechanical strength that counters osmotically driven turgor pressure, is an important factor for water movement in plants, acts as a physical barrier against pathogens (Somerville et al., 2004), and is a determining factor for plant cell morphogenesis. Hence, the cell wall plays a central role in plant biology.Two main types of cell walls can typically be distinguished: the primary and the secondary cell wall. The major load-bearing component in both of these cell walls is the β-1,4-linked glucan polymer cellulose (Somerville et al., 2004). Cellulose polymers are synthesized by plasma membrane (PM)-localized cellulose synthase (CesA) complexes (Mueller and Brown, 1980), which contain several CesA subunits with similar amino acid sequences (Mutwil et al., 2008a). The primary wall CesA complexes are believed to be assembled in the Golgi and are subsequently delivered to the PM via vesicular trafficking (Gutierrez et al., 2009), sometimes associated with Golgi pausing (Crowell et al., 2009). Furthermore, the primary wall CesA complexes are preferentially inserted into the PM at sites that coincide with cortical microtubules (MTs), which subsequently guide cellulose microfibril deposition (Gutierrez et al., 2009). Hence, the cortical MT array is a determinant for multiple aspects of primary wall cellulose production.The actin cytoskeleton plays a crucial role in organized deposition of cell wall polymers in many cell types, including cellulose-related polymers and pectins in tip-growing cells, such as pollen tubes and root hairs (Hu et al., 2003; Chen et al., 2007). Thus, actin-depolymerizing drugs and genetic manipulation of ACTIN genes impair directed expansion of tip-growing cells and long-distance transport of Golgi bodies with vesicles to growing regions (Ketelaar et al., 2003; Szymanski, 2005). In diffusely growing cells in roots and hypocotyls, loss of anisotropic growth has also been observed in response to mutations to vegetative ACTIN genes and to actin-depolymerizing and -stabilizing drugs (Baluska et al., 2001; Kandasamy et al., 2009). While actin is clearly important for cell wall assembly, it is less clear what precise roles it plays.One well-known function of actin in higher plants is to support intracellular movement of cytoplasmic organelles via actomyosin-based motility (Geisler et al., 2008; Szymanski, 2009). During primary wall synthesis in interphase cells, treatment with the actin assembly inhibitor latrunculin B (LatB) led to inhibition of Golgi motility and pronounced inhomogenities in CesA density at the PM (Crowell et al., 2009; Gutierrez et al., 2009) that coincided with the density of underlying and immobile Golgi bodies (Gutierrez et al., 2009). These results suggested that Golgi motility is important for CesA distribution (Gutierrez et al., 2009). The actin cytoskeleton also appears to be important for secondary wall cellulose microfibril deposition. For example, longitudinal actin filaments (AFs) define the movement of secondary wall CesA-containing Golgi bodies in developing xylem vessels (Wightman and Turner, 2008). In addition, it has been proposed that the AFs also can regulate the delivery of the secondary wall CesA complex to the PM via pausing of the Golgi (Wightman and Turner, 2008). It is therefore clear that actin organization is important for CesA distribution and for the pattern of cellulose microfibril deposition.Despite the above findings, very few reports have undertaken detailed studies to elucidate the role of the actin cytoskeleton in the distribution and trafficking of specific proteins in plant cells. Here, we have investigated the intracellular trafficking of CesA-containing vesicles and delivery of CesAs to the PM, in the context of the actin cytoskeleton. We quantitatively demonstrate that the organization of the actin cytoskeleton regulates CesA-containing Golgi distribution and the exocytic and endocytic rate of the CesAs. However, actin organization has no effect on the localized insertion of CesAs at sites of MTs at the PM.  相似文献   
45.
For the first time we have developed a reliable and efficient vacuum infiltration-assisted Agrobacterium-mediated genetic transformation (VIAAT) protocol for Indian soybean cultivars and recovered fertile transgenic soybean plants through somatic embryogenesis. Immature cotyledons were used as an explant and three Agrobacterium tumefaciens strains (EHA 101, EHA 105, and KYRT 1) harbouring the binary vector pCAMBIA1301 were experimented in the co-cultivation. The immature cotyledons were pre-cultured in liquid somatic embryo induction medium prior to vacuum infiltration with the Agrobacterium suspension and co-cultivated for 3 days on co-cultivation medium containing 50 mg l?1 citric acid, 100 µM acetosyringone, and 100 mg l?1 l-cysteine. The transformed somatic embryos were selected in liquid somatic embryo induction medium containing 10 mg l?1 hygromycin and the embryos were germinated in basal medium containing 20 mg l?1 hygromycin. The presence and integration of the hpt II and gus genes into the soybean genome were confirmed by GUS histochemical assay, polymerase chain reaction, and Southern hybridization. Among the different combinations tested, high transformation efficiency (9.45 %) was achieved when immature cotyledons of cv. Pusa 16 were pre-cultured for 18 h and vacuum infiltrated with Agrobacterium tumefaciens KYRT 1 for 2 min at 750 mm of Hg. Among six Indian soybean cultivars tested, Pusa 16 showed highest transformation efficiency of 9.45 %. The transformation efficiency of this method (VIAAT) was higher than previously reported sonication-assisted Agrobacterium-mediated transformation. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into soybean has been developed.  相似文献   
46.
This paper reports an approach to enable rapid concentration and recovery of bacterial cells from aqueous chicken homogenates as a preanalytical step of detection. This approach includes biochemical pretreatment and prefiltration of food samples and development of an automated cell concentration instrument based on cross-flow microfiltration. A polysulfone hollow-fiber membrane module having a nominal pore size of 0.2 μm constitutes the core of the cell concentration instrument. The aqueous chicken homogenate samples were circulated within the cross-flow system achieving 500- to 1,000-fold concentration of inoculated Salmonella enterica serovar Enteritidis and naturally occurring microbiota with 70% recovery of viable cells as determined by plate counting and quantitative PCR (qPCR) within 35 to 45 min. These steps enabled 10 CFU/ml microorganisms in chicken homogenates or 102 CFU/g chicken to be quantified. Cleaning and sterilizing the instrument and membrane module by stepwise hydraulic and chemical cleaning (sodium hydroxide and ethanol) enabled reuse of the membrane 15 times before replacement. This approach begins to address the critical need for the food industry for detecting food pathogens within 6 h or less.  相似文献   
47.
Membrane microcompartments of the early endosomes serve as a sorting and signaling platform, where receptors are either recycled back to the plasma membrane or forwarded to the lysosome for destruction. In metazoan cells, three complexes, termed BLOC-1 to -3, mediate protein sorting from the early endosome to lysosomes and lysosome-related organelles. We now demonstrate that BLOC-1 is an endosomal Rab-GAP (GTPase-activating protein) adapter complex in yeast. The yeast BLOC-1 consisted of six subunits, which localized interdependently to the endosomes in a Rab5/Vps21-dependent manner. In the absence of BLOC-1 subunits, the balance between recycling and degradation of selected cargoes was impaired. Additionally, our data show that BLOC-1 is both a Vps21 effector and an adapter for its GAP Msb3. BLOC-1 and Msb3 interacted in vivo, and both mutants resulted in a redistribution of active Vps21 to the vacuole surface. We thus conclude that BLOC-1 controls the lifetime of active Rab5/Vps21 and thus endosomal maturation along the endocytic pathway.  相似文献   
48.
Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing.  相似文献   
49.
Spot blotch caused by Bipolaris sorokiniana is a major disease of wheat in warm and humid wheat growing regions of the world including south Asian countries such as India, Nepal and Bangladesh. The CIMMYT bread wheat line Saar which carries the leaf tip necrosis (LTN)-associated rust resistance genes Lr34 and Lr46 has exhibited a low level of spot blotch disease in field trials conducted in Asia and South America. One hundred and fourteen recombinant inbred lines (RILs) of Avocet (Susceptible) × Saar, were evaluated along with parents in two dates of sowing in India for 3 years (2007–2008 to 2009–2010) to identify quantitative trait loci (QTL) associated with spot blotch resistance, and to determine the potential association of Lr34 and Lr46 with resistance to this disease. Lr34 was found to constitute the main locus for spot blotch resistance, and explained as much as 55 % of the phenotypic variation in the mean disease data across the six environments. Based on the large effect, the spot blotch resistance at this locus has been given the gene designation Sb1. Two further, minor QTL were detected in the sub-population of RILs not containing Lr34. The first of these was located about 40 cM distal to Lr34 on 7DS, and the other corresponded to Lr46 on 1BL. A major implication for wheat breeding is that Lr34 and Lr46, which are widely used in wheat breeding to improve resistance to rust diseases and powdery mildew, also have a beneficial effect on spot blotch.  相似文献   
50.
Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号