首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1733篇
  免费   101篇
  国内免费   1篇
  1835篇
  2023年   4篇
  2022年   25篇
  2021年   43篇
  2020年   32篇
  2019年   34篇
  2018年   61篇
  2017年   39篇
  2016年   62篇
  2015年   78篇
  2014年   97篇
  2013年   124篇
  2012年   139篇
  2011年   139篇
  2010年   80篇
  2009年   65篇
  2008年   107篇
  2007年   101篇
  2006年   94篇
  2005年   75篇
  2004年   78篇
  2003年   63篇
  2002年   67篇
  2001年   21篇
  2000年   15篇
  1999年   15篇
  1998年   24篇
  1996年   14篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1989年   7篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   6篇
  1981年   6篇
  1980年   3篇
  1973年   3篇
  1972年   4篇
  1969年   2篇
  1961年   2篇
  1960年   3篇
  1959年   4篇
  1958年   2篇
  1957年   7篇
排序方式: 共有1835条查询结果,搜索用时 0 毫秒
41.
Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.  相似文献   
42.
In this study, we report novel and simple chemical syntheses of acyl dihydroxyacetone phosphate (DHAP) and 1-acyl glycero-3-phosphate [lysophosphatidic acid (LPA)], key intermediaries in the formation of glycerolipids containing ester and ether bonds. The synthesis of acyl DHAPs involved acylating the dimethyl ketal of DHAP by acid anhydride using 4-pyrrolidinopyridine as the catalyst, and the resulting product was deketalized by HClO(4) in acetone to produce acyl DHAP. The acid anhydride was either added directly or generated in the reaction mixture from the corresponding fatty acid using dicyclohexylcarbodiimide as the condensing agent. Using these methods, a number of acyl DHAPs having short-, medium-, and long-chain saturated and unsaturated acyl groups were synthesized, with overall yields from 37% to 75%. The activities of these acyl DHAPs as substrates for guinea pig liver peroxisomal acyl DHAP:NADPH reductase and alkyl DHAP synthase were then determined. Next, starting from these acyl DHAPs, a variety of LPAs were synthesized by chemical reduction of the ketone group. Biological activities of these LPAs were determined by measuring their relative abilities to release intracellular Ca(2+) via the LPA receptor. A combined chemical-enzymatic method is also described to prepare the natural LPA from the racemic mixture.  相似文献   
43.
Detection of the foodborne pathogen Listeria monocytogenes requires that food samples be processed to remove proteins and lipids, concentrate microorganisms to a detectable concentration, and recover the concentrated cells in a small volume compatible with micron-scale biochips. Mechanistic considerations addressed in this research include the roles of membrane structure, pore size, and detergents in maximizing recovery of cells from a complex biological fluid. The fluid in this case was a food sample (hotdog extract) inoculated with L. monocytogenes. This study showed how membrane filtration using a syringe filter is able to concentrate L. monocytogenes by 95x with up to 95% recovery of living microorganisms by concentrating 50 mL of food sample into a volume of 500 microL. Tween 20 was added to the sample to prevent irreversible adsorption of the microorganism to the membrane and thereby help to ensure high recovery. Comparison of polycarbonate, mixed cellulose, nylon, and PVDF membranes with 0.2 to 0.45 microm pores showed the 0.2 microm polycarbonate membrane with straight through, mono-radial pores gives the highest recovery of living microorganisms. The mixed cellulose, nylon, and PVDF membranes have a fibrous structure whose characteristic openings are much larger than their effective pore size cut-offs of 0.22 or 0.45 microm. We define conditions for rapid membrane-based cell concentration and recovery that has the potential to supplant enrichment steps that require a day or more. This approach has the added benefit of facilitating examination of a large amount of fluid volume by reducing its volume to a range that is compatible with the microliter scales of biochip or other biosensor detection systems.  相似文献   
44.
Nanoparticles carrying biologically active functional sets (e.g., targeting moiety, payload, tracer) have potential use in a wide range of clinical applications. Though complex, such constructions should, as far as possible, have a defined molecular architecture and be monodisperse. However, the existing methods to achieve this goal are unsuitable for the incorporation of peptides and proteins, and those that provide for orthogonal introduction of two different types of functional element are incompatible with the use of commercially available materials. In this study, we have developed approaches for the production of nanoparticles based on commercially available polyamidoamine (PAMAM) dendrimers. First, we identified an optimized oxime conjugation strategy under which complex dendrimers can be fully decorated not only with model peptides, but also with recombinant proteins (insulin was taken as an example). Second, we developed a strategy based on a two-chain covalent heterodendrimer (a "diblock") based on cystamine core PAMAM dendrimers and used it to generate heterodendrimers, into which a peptide array and a mannose array were orthogonally introduced. Finally, by incorporating a functionalized linker into the diblock architecture we were able to site-specifically introduce a third functional element into the nanoparticle. We exemplified this approach using fluorescein, a mannose array, and a peptide array as the three functionalities. We showed that incorporation of a mannose array into a nanoparticle strongly and specifically enhances uptake by sentinel cells of the immune system, an important property for vaccine delivery applications. These PAMAM dendrimer-based approaches represent a robust and versatile platform for the development of bioactive nanoparticles.  相似文献   
45.
Star polymers with poly(ethylene glycol) (PEG) arms and a degradable cationic core were synthesized by the atom transfer radical copolymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate macromonomer (PEGMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and a disulfide dimethacrylate (cross-linker, SS) via an "arm-first" approach. The star polymers had a diameter ~15 nm and were degraded under redox conditions by glutathione treatment into individual polymeric chains due to cleavage of the disulfide cross-linker, as confirmed by dynamic light scattering. The star polymers were cultured with mouse calvarial preosteoblast-like cells, embryonic day 1, subclone 4 (MC3T3-E1.4) to determine biocompatibility. Data suggest star polymers were biocompatible, with ≥ 80% cell viability after 48 h of incubation even at high concentration (800 μg/mL). Zeta potential values varied with N/P ratio confirming complexation with siRNA. Successful cellular uptake of the star polymers in MC3T3-E1.4 cells was observed by confocal microscopy and flow cytometry after 24 h of incubation.  相似文献   
46.
47.

Background

Listeria adhesion protein (LAP) is a housekeeping bifunctional enzyme consisting of N-terminal acetaldehyde dehydrogenase (ALDH) and C-terminal alcohol dehydrogenase (ADH). It aids Listeria monocytogenes in crossing the epithelial barrier through a paracellular route by interacting with its host receptor, heat shock protein 60 (Hsp60). To gain insight into the binding interaction between LAP and Hsp60, LAP subdomain(s) participating in the Hsp60 interaction were investigated.

Methods

Using a ModBase structural model, LAP was divided into 4 putative subdomains: the ALDH region contains N1 (Met1–Pro223) and N2 (Gly224–Gly411), and the ADH region contains C1 (Gly412–Val648) and C2 (Pro649–Val866). Each subdomain was cloned and overexpressed in Escherichia coli and purified. Purified subdomains were used in ligand overlay, immunofluorescence, and bead-based epithelial cell adhesion assays to analyze each domain''s affinity toward Hsp60 protein or human ileocecal epithelial HCT-8 cells.

Results

The N2 subdomain exhibited the greatest affinity for Hsp60 with a K D of 9.50±2.6 nM. The K D of full-length LAP (7.2±0.5 nM) to Hsp60 was comparable to the N2 value. Microspheres (1 µm diameter) coated with N2 subdomain showed significantly (P<0.05) higher binding to HCT-8 cells than beads coated with other subdomains and this binding was inhibited when HCT-8 cells were pretreated with anti-Hsp60 antibody to specifically block epithelial Hsp60. Furthermore, HCT-8 cells pretreated with purified N2 subdomain also reduced L. monocytogenes adhesion by about 4 log confirming its involvement in interaction with epithelial cells.

Conclusion

These data indicate that the N2 subdomain in the LAP ALDH domain is critical in initiating interaction with mammalian cell receptor Hsp60 providing insight into the molecular mechanism of pathogenesis for the development of potential anti-listerial control strategies.  相似文献   
48.
The episomic element F'lac(+) was transferred, probably by conjugation, from Escherichia coli to Lac(-) strains of Erwinia herbicola, Erwinia amylovora, and Erwinia chrysanthemi (but not to several other Erwinia spp. In preliminary trials). The lac genes in the exconjugants of the Erwinia spp. showed varying degrees of stability depending on the strain (stable in E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but markedly unstable in E. chrysanthemi strain EC16). The lac genes and the sex factor (F) were eliminated from the exconjugants by treatment with acridine orange, thus suggesting that both lac and F are not integrated in the Erwinia exconjugants. All of the tested Lac(+) exconjugants of E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but not of E. chrysanthemi strain EC 16, were sensitive to the F-specific phage M13. The heterogenotes (which harbored F'lac(+)) of E. herbicola strains Y46 and Y74, E. amylovora strain EA178, and E. chrysanthemi strain EC16 were able to transfer lac genes by conjugation to strains of E. herbicola, E. amylovora, E. chrysanthemi, Escherichia coli, and Shigella dysenteriae. The frequency of such transfer from Lac(+) exconjugants of Erwinia spp. was comparable to that achieved by using E. coli F'lac(+) as donors, thus indicating the stability, expression, and restriction-and-modification properties of the sex factor (F) in Erwinia spp.  相似文献   
49.

Background

Emergency referral services (ERS) are being strengthened in India to improve access for institutional delivery. We evaluated a publicly financed and privately delivered model of ERS in Punjab state, India, to assess its extent and pattern of utilization, impact on institutional delivery, quality and unit cost.

Methods

Data for almost 0.4 million calls received from April 2012 to March 2013 was analysed to assess the extent and pattern of utilization. Segmented linear regression was used to analyse month-wise data on number of institutional deliveries in public sector health facilities from 2008 to 2013. We inspected ambulances in 2 districts against the Basic Life Support (BLS) standards. Timeliness of ERS was assessed for determining quality. Finally, we computed economic cost of implementing ERS from a health system perspective.

Results

On an average, an ambulance transported 3–4 patients per day. Poor and those farther away from the health facility had a higher likelihood of using the ambulance. Although the ERS had an abrupt positive effect on increasing the institutional deliveries in the unadjusted model, there was no effect on institutional delivery after adjustment for autocorrelation. Cost of operating the ambulance service was INR 1361 (USD 22.7) per patient transported or INR 21 (USD 0.35) per km travelled.

Conclusion

Emergency referral services in Punjab did not result in a significant change in public sector institutional deliveries. This could be due to high baseline coverage of institutional delivery and low barriers to physical access. Choice of interventions for reduction in Maternal Mortality Ratio (MMR) should be context-specific to have high value for resources spent. The ERS in Punjab needs improvement in terms of quality and reduction of cost to health system.  相似文献   
50.
The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号