首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21589篇
  免费   1122篇
  国内免费   27篇
  22738篇
  2023年   169篇
  2022年   409篇
  2021年   778篇
  2020年   446篇
  2019年   487篇
  2018年   708篇
  2017年   651篇
  2016年   867篇
  2015年   996篇
  2014年   1284篇
  2013年   1719篇
  2012年   1830篇
  2011年   1631篇
  2010年   964篇
  2009年   838篇
  2008年   1008篇
  2007年   975篇
  2006年   832篇
  2005年   762篇
  2004年   614篇
  2003年   526篇
  2002年   476篇
  2001年   369篇
  2000年   329篇
  1999年   288篇
  1998年   134篇
  1997年   91篇
  1996年   108篇
  1995年   89篇
  1994年   75篇
  1993年   71篇
  1992年   174篇
  1991年   174篇
  1990年   144篇
  1989年   112篇
  1988年   157篇
  1987年   137篇
  1986年   120篇
  1985年   111篇
  1984年   113篇
  1983年   73篇
  1982年   58篇
  1981年   72篇
  1980年   60篇
  1979年   84篇
  1977年   62篇
  1976年   51篇
  1975年   49篇
  1973年   49篇
  1972年   57篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
Janus kinase 3 (Jak3) is a non-receptor tyrosine kinase known to be expressed in hematopoietic cells. Studies of whole organ homogenates show that Jak3 is also expressed in the intestines of both human and mice. However, neither its expression nor its function has been defined in intestinal epithelial enterocytes. The present studies demonstrate that functional Jak3 is expressed in human intestinal enterocytes HT-29 Cl-19A and Caco-2 and plays an essential role in the intestinal epithelial wound repair process in response to interleukin 2 (IL-2). Exogenous IL-2 enhanced the wound repair of intestinal enterocytes in a dose-dependent manner. Activation by IL-2 led to rapid tyrosine phosphorylation and redistribution of Jak3. IL-2-stimulated redistribution of Jak3 was inhibited by the Jak3-specific inhibitor WHI-P131. IL-2 also induced Jak3-dependent redistribution of the actin cytoskeleton in migrating cells. In these cells Jak3 interacted with the intestinal and renal epithelial cell-specific cytoskeletal protein villin in an IL-2-dependent manner. Inhibition of Jak3 activation resulted in loss of tyrosine phosphorylation of villin and a significant decrease in wound repair of the intestinal epithelial cells. Previously, we had shown that tyrosine phosphorylation of villin is important for cytoskeletal remodeling and cell migration. The present study demonstrates a novel pathway in intestinal enterocytes in which IL-2 enhances intestinal wound repair through mechanisms involving Jak3 and its interactions with villin.  相似文献   
952.
Identification of the mechanisms underlying cellular plasticity in salamander cells is important because these may give pointers to the restricted regenerative ability of mammals. The myofibers from salamanders are remarkable for their ability to undergo cellularization and cell-cycle re-entry during regeneration. Here, we describe a detailed method for the isolation and culture of larval salamander myofibers in numbers suitable for cellular plasticity studies. The basic protocol for isolation and purification of cells can be completed in 4 h.  相似文献   
953.
Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.  相似文献   
954.
Nitric oxide (NO) is a diffusible, gaseous signaling molecule. In plants, NO influences growth and development, and it can also affect plant responses to various stresses. Because NO induces root differentiation and interacts with reactive oxygen species, we examined the temporal effect of NO elicitation on root growth, saponin accumulation and antioxidant defense responses in the adventitious roots of mountain ginseng (Panax ginseng). The observations revealed that NO is involved in root growth and saponin production. Elicitation with sodium nitroprusside (SNP) activated O2 -generating NADPH oxidase (NOX) activity, which most probably subsequently enhanced growth of adventitious roots of mountain ginseng. A severe inhibition of NOX activity and decline in dry weight of SNP elicited adventitious roots in the presence of NOX inhibitor (diphenyl iodonium, DPI), which further supports involvement of NOX in root growth. Enhanced activities of antioxidant enzymes by SNP appear to be responsible for low H2O2, less lipid peroxidation, and modulation of ascorbate and non-protein thiol statuses in the adventitious roots of mountain ginseng. Dry mass, saponin content and NOX activity was related with NO content present in adventitious roots of mountain ginseng.  相似文献   
955.
Biotechnology is a life science-based technique especially used in agriculture, medicine and food sciences. It is generally defined as the manipulation in organisms to generate products for the welfare of the world. Biotechnology combines disciplines such as genetics, biochemistry, microbiology, and cell biology along with information technology, chemical engineering, robotics etc. It includes basic industries such as food processing, tissue culture, plant development and other sophisticated ones such as recombinant therapeutics and diagnostics. Biotechnology, globally recognized as a rapidly emerging and far-reaching technology, is aptly described as the "technology of hope" for its promise of food, health and environmental sustainability. In India, biotechnology employs more than 10 000 people and generates roughly US$ 500 million in revenue annually. The biotechnology market has increased its sales from Rs. 50 billion in 1997 to Rs.70 billion in 2000, and is expected to cross Rs. 240 billion by the year 2010. In India, the human health biotech products account for 60% of the total market; agribiotech and veterinary 25%, medical devices, contract research and development (R&D), reagents and supplies constitute the remaining 15% Moreover, to facilitate foreign investment, capital and government policies are being revised. Other important industries include industrial enzyme manufacture, bioinformatics, and medical devices. Biotechnology has had limited appeal so far on our capital markets, and we have less then a dozen biotech companies listed on the public markets.  相似文献   
956.
957.
NT-1 cells of tobacco (Nicotiana tabacum L.) were transformed with pGBSSHBS and pGBSSHER expression cassettes wherein expression of hepatitis B surface antigen (HBsAg) was driven by potato granule-bound starch synthase (GBSS) promoter. The transformed nature of the cells was confirmed by PCR analysis. Expression of HBsAg was confirmed by RT-PCR and Western blotting and levels of expression were assayed by ELISA. Transformed cell lines exhibited a sucrose-inducible pattern of HBsAg expression. NT-1 medium supplemented with 175 mmol L−1 sucrose gave the highest HBsAg expression of 198 ng g−1 FW after 8 days of induction. Different sugars, for example glucose, fructose, and palatinose, were also tested to study the inducible nature of GBSS promoter. The results demonstrate that potato GBSS promoter can be used in heterologous host systems like tobacco NT-1 cell suspension cultures for sucrose-inducible expression of recombinant proteins.  相似文献   
958.
959.
The discovery of nucleotide diversity captured as single feature polymorphism (SFP) by using the expression array is a high-throughput and effective method in detecting genome-wide polymorphism. The efficacy of such method was tested in rice, and the results presented in the paper indicate high sensitivity in predicting SFP. The sensitivity of polymorphism detection was further demonstrated by the fact that no biasness was observed in detecting SFP with either single or multiple nucleotide polymorphisms. The high density SFP data that can be generated quite effectively by the current method has promise for high resolution genetic mapping studies, as physical location of features are well-defined on rice genome.  相似文献   
960.
Lenka N  Ramasamy SK 《PloS one》2007,2(12):e1349
The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES) cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号