首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21530篇
  免费   1122篇
  国内免费   27篇
  2023年   164篇
  2022年   369篇
  2021年   777篇
  2020年   446篇
  2019年   487篇
  2018年   708篇
  2017年   651篇
  2016年   867篇
  2015年   996篇
  2014年   1284篇
  2013年   1719篇
  2012年   1830篇
  2011年   1631篇
  2010年   964篇
  2009年   838篇
  2008年   1008篇
  2007年   975篇
  2006年   832篇
  2005年   762篇
  2004年   614篇
  2003年   526篇
  2002年   476篇
  2001年   369篇
  2000年   329篇
  1999年   288篇
  1998年   134篇
  1997年   91篇
  1996年   108篇
  1995年   89篇
  1994年   75篇
  1993年   71篇
  1992年   174篇
  1991年   174篇
  1990年   144篇
  1989年   112篇
  1988年   157篇
  1987年   137篇
  1986年   120篇
  1985年   111篇
  1984年   113篇
  1983年   73篇
  1982年   58篇
  1981年   72篇
  1980年   60篇
  1979年   84篇
  1977年   62篇
  1976年   51篇
  1975年   49篇
  1973年   49篇
  1972年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The intracellular pH of the halotolerant green algae Dunaliella tertiolecta, was determined by the distribution of 5,5-dimethyl-2(14C)-oxalolidine-2,5-dione (DMO) between the cell and the surrounding medium. 5,5-dimethyl-2(14C)oxalolidine-2,4-dione was not metabolized by the algal cells. The intracellular pH of Dunaliella tertiolecta was 6.8 in the dark and 7.4 in the light. During a salt stress, after two hours, the intracellular pH was increased by 0.2 pH units in both light and dark. The salt stressed cells maintained a constant pH of about 7.5 over the pH range of 6.5 to 8.5. Because of the relatively low permeability coefficient of the plasma membrane for DMO, this technique does not permit rapid pH determinations during the induction period after a salt stress. The magnitude of the salt induced pH changes measured 2 h after the salt stress implies a minor importance of this alkalization in this time range, but does not exclude a larger importance of pH changes for osmoregulation during the induction period.Abbreviations Chl chlorophyll - DMO 5,5-dimethyl-2(14C)oxalolidine-2,4-dione - PCV packed cell volume - SDS sodium dodecyl sulfate  相似文献   
62.
63.
Mitomycin C (MMC), a quinone-containing antitumor drug, has been shown to alkylate DNA and to form DNA cross-links. The ability of MMC to alkylate O6-guanine and to form interstrand cross-links (ISC) has been studied using Mer+ and Mer- human embryonic cells. Mer+ (IMR-90) cells have been reported to contain an O6-alkylguanine transferase enzyme and are, in general, more resistant to alkylating agents than the Mer- (VA-13) cell line, which is deficient in the repair of O6-lesions in DNA. Studies reported here show that MMC is more cytotoxic to VA-13 cells compared to IMR-90 cells. The alkaline elution technique was used to quantify MMC-induced ISC, and double strand breaks (DSB) in these cells. The drug-dependent formation of DSB was significantly lower in IMR-90 cells than in VA-13 cells. In contrast, no significant difference in cross-linking could be detected at the end of 2-h drug treatment. Although a small increase in cross-link frequency was observed in the VA-13 cell line relative to the IMR-90 cell line 6 h post drug treatment, it is not clear whether monoalkylated adducts at the O6-position are formed, and contribute to cross-link formation for differential cytotoxicity in VA-13 cells. Electron spin resonance and spin-trapping technique were used to detect the formation of hydroxyl radical from MMC-treated cells. Our studies show that MMC significantly stimulated the formation of hydroxyl radical in VA-13 cells, but not in the IMR-90 cells. The formation of the hydroxyl radical was inhibited by superoxide dismutase (SOD) and catalase. In addition, the presence of these enzymes partially protected VA-13 cells from MMC toxicity but not IMR-90 cells. Further studies indicated that the decreased free radical formation and resistance to MMC may be due to the increased activities of catalase and glutathione transferase in the IMR-90 cell line. These results suggest that MMC-dependent DNA damage (alkylation and DNA DSB) and the stimulation of oxy-radical formation may play critical roles in the determination of MMC-induced cell killing.  相似文献   
64.
65.
Hyaluronidase treatment of hyaluronic acid produced a series of oligosaccharides. Those between 3 and 16 disaccharides in length stimulated angiogenesis in vivo and the proliferation of tissue cultured endothelial cells in vitro. This effect appears to be cell type specific, as no stimulation of fibroblasts or smooth muscle cells was observed. Endothelial cells were found to endocytose both high- and low-molecular-mass hyaluronate, which might be receptor mediated. Fibroblasts and smooth muscle cells, cultured under the same conditions, showed negligible uptake of hyaluronate. Thus, the cell-specific effects may be due to the differences in internalization of hyaluronate. High-molecular-weight hyaluronate both inhibited endothelial cell proliferation and disrupted newly formed monolayers. These data are consistent with the ability of hyaluronate to inhibit new blood vessel formation in vivo and also suggest that hyaluronate metabolism plays a pivotal role in the regulation of angiogenesis.  相似文献   
66.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   
67.
Melting behavior of a covalently closed, single-stranded, circular DNA   总被引:6,自引:0,他引:6  
We synthesized the 26-residue deoxynucleotide sequence d(TTCCT5GGAATTCCT5GGAA) which folds intramolecularly to form a dumbbell-shaped, double-hairpin structure with a gap between the 3' and the 5' ends. We used T4 polynucleotide kinase to phosphorylate the 5' end followed by T4 DNA ligase to close the 3' and 5' ends. Melting of the dumbbell structure formed by this ligated sequence produces a covalently closed, single-stranded, circular final state. We employed calorimetric and spectroscopic techniques to characterize thermodynamically the melting behavior of the ligated molecule and compared it with the corresponding melting behavior of its unligated precursor. This comparison allowed us to characterize uniquely the influence of single-stranded ring closure on intramolecular duplex melting. The data reveal that ring closure produces a thermally more stable structure which exhibits significantly altered melting thermodynamics. We rationalize these thermodynamic differences in terms of differential solvation and differential counterion association between the ligated and unligated molecules. We also note the importance of such constrained dumbbell structures as models for hairpins, cruciforms, and locally melted domains within naturally occurring DNA polymers.  相似文献   
68.
The 20-kDa regulatory myosin light chain (MLC), also known as MLC-2, plays an important role in the regulation of both smooth muscle and nonmuscle cell contractile activity. Phosphorylation of MLC-2 by the enzyme MLC kinase increases the actin-activated myosin ATPase activity and thereby regulates the contractile activity. We have isolated and characterized an MLC-2 cDNA corresponding to the human vascular smooth muscle MLC-2 isoform from a cDNA library derived from umbilical artery RNA. The translation of the in vitro synthesized mRNA, corresponding to the cDNA insert, in a rabbit reticulocyte lysate results in the synthesis of a 20,000-dalton protein that is immunoreactive with antibodies raised against purified chicken gizzard MLC-2. The derived amino acid sequence of the putative human smooth muscle MLC-2 shows only three amino acid differences when compared to chicken gizzard MLC-2. However, comparison with the human cardiac isoform reveals only 48% homology. Blot hybridizations and S1 nuclease analysis indicate that the human smooth muscle MLC-2 isoform is expressed restrictively in smooth muscle tissues such as colon and uterus and in some, but not all, nonmuscle cell lines. Previously reported MLC-2 cDNA from rat aortic smooth muscle cells in culture is ubiquitously expressed in all muscle and nonmuscle cells, and it was suggested that both smooth muscle and nonmuscle MLC-2 proteins are identical and are probably encoded by the same gene. In contrast, the human smooth muscle MLC-2 cDNA that we have characterized from an intact smooth muscle tissue is not expressed in skeletal and cardiac muscles and also in a number of nonmuscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
69.
The enzyme activity of glutathione reductase (NAD(P)H:oxidized-glutathione oxidoreductase, EC 1.6.4.2) incorporated in CTAB/H2O/CHCl3-isooctane (1:1, v/v) reverse micelles has been investigated. Enzyme follows the Michaelis-Menten kinetics within a specified concentration range. Effects of pH, waterpool (W0), and surfactant concentration on the activity of glutathione reductase have been studied in detail. Optimum pH for the maximum enzyme activity was found to be dependent on the size of the waterpool. Further, a substrate inhibition was observed when concentration of one of the substrates was present in large excess over the other substrate. Km values for the substrate, oxidized glutathione (GSSG) and NADPH in CTAB/H2O/CHCl3-isooctane (1:1, v/v) were determined at W0 values of 14.4, 20.0, 25.5 and 29.7, at pH 8.0. These values are close to those obtained in aqueous solution, whereas the kcat values vary with W0 values of 8.8 to 32.3. Studies on the storage stability in the reverse micelle at W0 29.7 and pH 8.0 showed that glutathione reductase retained about 80% of its activity even after a month. The enzyme showed a higher stability at high waterpool. Oxidized glutathione (GSSG) provides protection to glutathione reductase against denaturation on storage in reverse micellar solution. Apparently, the enzyme is able to acquire a suitable native conformation at waterpool 29.7 and pH 8.0 and thereby exhibits an activity and stability inside the micellar cavity that are almost equivalent to that in aqueous solution.  相似文献   
70.
Ultrasound induced damages and time bound recovery in mouse liver   总被引:1,自引:0,他引:1  
Therapeutic ultrasound at 875 kHz at 10 and 15 W/cm2 intensity induced extensive damages in the liver of mouse. Total exposure of 5 min was spread over 5 days. Aqueous medium was avoided by coupling the transducer directly to the skin surface. Mild to extensive damages were noted. Complete distortion of hepatocellular architecture was noted in 15 W irradiated mice. However, there was almost complete recovery by 10th day following the last exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号