首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2286篇
  免费   154篇
  国内免费   2篇
  2023年   8篇
  2022年   32篇
  2021年   62篇
  2020年   42篇
  2019年   49篇
  2018年   73篇
  2017年   54篇
  2016年   77篇
  2015年   102篇
  2014年   125篇
  2013年   156篇
  2012年   171篇
  2011年   166篇
  2010年   102篇
  2009年   87篇
  2008年   135篇
  2007年   125篇
  2006年   110篇
  2005年   96篇
  2004年   88篇
  2003年   75篇
  2002年   80篇
  2001年   31篇
  2000年   23篇
  1999年   26篇
  1998年   29篇
  1996年   18篇
  1995年   12篇
  1994年   11篇
  1993年   12篇
  1992年   20篇
  1991年   12篇
  1990年   15篇
  1989年   17篇
  1988年   18篇
  1987年   17篇
  1986年   16篇
  1985年   10篇
  1984年   23篇
  1983年   10篇
  1982年   5篇
  1981年   8篇
  1980年   13篇
  1979年   7篇
  1978年   11篇
  1977年   8篇
  1975年   8篇
  1974年   6篇
  1972年   5篇
  1957年   7篇
排序方式: 共有2442条查询结果,搜索用时 31 毫秒
101.
Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.  相似文献   
102.
M24B peptidases cleaving Xaa-Pro bond in dipeptides are prolidases whereas those cleaving this bond in longer peptides are aminopeptidases-P. Bacteria have small aminopeptidases-P (36-39 kDa), which are diverged from canonical aminopeptidase-P of Escherichia coli (50 kDa). Structure-function studies of small aminopeptidases-P are lacking. We report crystal structures of small aminopeptidases-P from E. coli and Deinococcus radiodurans, and report substrate-specificities of these proteins and their ortholog from Mycobacterium tuberculosis. These are aminopeptidases-P, structurally close to small prolidases except for absence of dipeptide-selectivity loop. We noticed absence of this loop and conserved arginine in canonical archaeal prolidase (Maher et al., Biochemistry. 43, 2004, 2771-2783) and questioned its classification. Our enzymatic assays show that this enzyme is an aminopeptidase-P. Further, our mutagenesis studies illuminate importance of DXRY sequence motif in bacterial small aminopeptidases-P and suggest common evolutionary origin with human XPNPEP1/XPNPEP2. Our analyses reveal sequence/structural features distinguishing small aminopeptidases-P from other M24B peptidases.  相似文献   
103.
A Ni(II)-binding serpin, pNiXA, is abundant in Xenopus oocytes and embryos. Kinetic assays show that purified pNiXa strongly inhibits bovine α-chymotrypsin (K1 = 3 mM), weakly inhibits porcine elastase (K1 = 0.5 μM), and does not inhibit bovine trypsin. The reversible, slow-binding inhibition of α-chymotrypsin by pNiXa is unaffected by Ni(II). Ovochymase in egg exudates is inhibited by pNiXa, but to a limited extent, even at high pNiXa concentrations. An octadecapeptide that models the His-rich domain (-HRHRHEQQGHHDSAKHGH-) of pNiXa forms six-coordinate, octahedral Ni(II)-complexes when the N-terminus is acetylated, and a square-planar Ni(II)-complex when the N-terminus is unblocked. Spectroscopy reveals two distinct types of octahedral Ni(II)-coordination to the N-acetylated octadecapeptide, involving, respectively, 3–4 and 5–6 imidazole nitrogens; the octadecapeptide undergoes partial, reversible precipitation in pH-and Ni(II)-dependent fashion, suggesting an insoluble, Ni(II)-coupled (Hx)n-dimer. Such (Hx)n-peptide interaction is confirmed by an enzyme-linked biotin-avidin assay with N-biotin-KHRHRHE-amide and N-acetyl-KHRHRHE-resin beads, which become coupled after adding Ni(II) or Zn(II). H2O2 oxidation of 2′-deoxyguanosine to mutagenic 8-hydroxy-2′deoxyguanosine is enhanced by the octahedral Ni(II)-octadecapeptide complex, although the effect is more intense with the square-planar Ni(II) octadecapeptide complex. Immunoperoxidase staining of whole mounts wish pNiXa antibody shows that pNiXa is distributed throughout gastrula-stage embryos and is localized during organogenesis in the brain, eye, spinal cord, myotomes, craniofacial tissues, and other sites of Ni(II) induced anomalies. Patterns of pNiXa staining are similar in controls and Ni(II)-exposed embryos. Binding of Ni(II) to pNiXa may cause embryotoxicity by enhancing oxidative reactions that produce tissue injury and genotoxicity. Although the natural target proteinases for pNiXa inhibition have not been established, pNiXa may be an important regulator of proteolysis during embryonic development. © 1996 Wiley-Liss, Inc.  相似文献   
104.
105.
The evidence presented here constitutes the first report on the occurrence of lipoxygenase (LO) activity in the adult human liver. LO activity was isolated free of hemoglobin from the whole liver cytosol by affinity chromatography using a concanavalin-A sepharose 4B column, and some properties of its dioxygenase and co-oxidase activities were examined. High-pressure liquid chromatography (HPLC) analyses of arachidonic acid metabolites suggested the presence of 5-, 12-, and 15-LO activities in the human liver. Linoleic acid was converted into 13-hydroperoxyoctadecadienoic acid. The dioxygenase activity with a Vmax value of 1.74 μmoles/min/mg protein and a Km value of 0.48 mM was noted in the presence of different concentrations of linoleic acid at pH 10. The activity was markedly stimulated by the presence of calcium, ATP, hydrogen peroxide, and KCl in the assay medium. Under optimum conditions, all the xenobiotics tested were co-oxidized by the enzyme preparations in the presence of linoleic acid. Kinetic data obtained for benzidine oxidation yielded a Km value of 0.53 mM and a Vmax value of 90.9 nmoles/min/mg protein. At present, the significance of these findings in in vivo toxicity of benzidine is unknown. The linoleic acid-dependent dioxygenase and co-oxidase activities were thermolabile and inhibited by micromolar concentrations of several classical LO inhibitors, further confirming the involvement of LO in these reactions. © 1997 John Wiley & Sons, Inc.  相似文献   
106.
107.
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.  相似文献   
108.
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.  相似文献   
109.
BackgroundOur aim was to estimate the overall and age-specific incidence of lab-confirmed dengue fever using ELISA based assays among children 6 months to 15 years in Delhi.MethodsWe enrolled a cohort of 984 children aged 6 months to <14 years in South Delhi and followed-up weekly for fever for 24 months or till 15 completed years of child-age. Households of the enrolled children were geo-tagged. NS1, IgM and IgG assays were conducted using ELISA method to confirm dengue fever in children with ≥3 consecutive days of fever. Molecular typing was done in a subset of NS1 positive cases to identify the circulating serotypes.Principal findingsWe had a total of 1953 person-years (PY) of follow up. Overall, there were 4208 episodes of fever with peaks during June to November. The overall incidence (95%CI) of fever was 215/100 PY (209 to 222). A total of 74/1250 3-day fever episodes were positive for acute dengue fever (NS1 and/or IgM positive). The overall incidence (95%CI) of acute dengue fever was 37.9 (29.8 to 47.6) per 1000 PY; highest among children aged 5 to 10 years (50.4 per 1000 PY, 95% CI 36.5 to 67.8). Spatial autocorrelation analysis suggested a clustering pattern for the dengue fever cases (Moran’s Index 0.35, z-score 1.8, p = 0.06). Dengue PCR was positive in 16 of the 24 specimens tested; DEN 3 was the predominant serotype identified in 15/24 specimens.ConclusionsWe found a high incidence of dengue fever among under 15-year children with clustering of cases in the community. DEN 3 was the most commonly circulating strain encountered. The findings underscore the need for development of affordable pre-vaccination screening strategy as well as newer dengue vaccines for young children while continuing efforts in vector control.  相似文献   
110.
Depletion of CpG dinucleotides in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analyzed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off, almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP (Zinc-finger antiviral protein)-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG within the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta-, and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号