首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   10篇
  2013年   18篇
  2012年   18篇
  2011年   16篇
  2010年   20篇
  2009年   12篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1974年   2篇
  1972年   1篇
  1970年   2篇
排序方式: 共有180条查询结果,搜索用时 515 毫秒
21.
22.
23.
Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026 bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143–154, 286–296 and 304–323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (P < 0.05) MrCathL gene expression was noticed in haemocyte and lowest in eyestalk. Furthermore, the MrCathL gene expression in M. rosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.  相似文献   
24.
B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.  相似文献   
25.
The mode of female gametophyte development and the cytological effects of orbital flight factors, with and without radiation, on embryo sac development were studied in Tradescantia clone 02 flown in Biosatellite II. One package of 32 rooted inflorescences was exposed during the free-flight phase of the two-day orbital flight to about 220 R gamma radiation from an 85Sr source, and a nonirradiated package was flown as a flight control. Two similar packages, one irradiated and one unirradiated, were maintained in a ground-based vehicle as concurrent nonflight controls. Various postflight ground experiments were conducted in an attempt to associate with specific flight factors the effects observed in the orbited plants. Mature ovaries were fixed daily as the flowers opened for at least 20 days after the treatment, sectioned, stained, and analyzed for the rate of embryo sac abortion and other developmental abnormalities. The embryo sac in Tradescantia clone 02 is eight-nucleate with a Polygonum type of development. Irradiation during megasporogenesis produced an increased rate of embryo sac abortion and this radiation effect was greater in the environment of the flight vehicle than in the nonflight vehicle. This effect may be due to an increase in concentration of ethylene in the flight vehicle. A synergism between some undetermined flight factor and radiation was found to produce underdeveloped embryo sacs. Malfunctioning of the spindle, most probably due to free flight, was evidenced by the increased number of embryo sacs with misoriented nuclei.  相似文献   
26.
27.
α-Lipoic acid (LA), a naturally occurring cofactor reported to be present in a diverse group of microorganisms, plants, and animal tissues, has been widely and successfully used as a therapy for a variety of diseases, including diabetes and heart disease. However, to date, recombinant DNA technology has not been applied for higher LA production due mainly to difficulties in the functional expression of key enzymes involved in LA production. Here, we report a study for higher LA production with the aid of chaperone plasmids, DnaKJE and trigger factor (Tf). The lipA and lplA genes encoding lipoate synthase and lipoate protein ligase in Pseudomonas fluorescens, respectively, were cloned and transformed into Escherichia coli K12. When they were overexpressed in E. coli, both LipA and LplA were expressed as inclusion bodies leading to no increase in LA production. However, when chaperone plasmids DnaKJE and Tf were coexpressed with lipA and lplA, the resulting recombinant E. coli strains showed higher LA production than the wild-type E. coli by 32–111%, respectively.  相似文献   
28.
Nitrile groups are catabolized to the corresponding acid and ammonia through one-step reaction involving a nitrilase. Here, we report the use of bioinformatic and biochemical tools to identify and characterize the nitrilase (NitPf5) from Pseudomonas fluorescens Pf-5. The nitPf5 gene was identified via sequence analysis of the whole genome of P. fluorescens Pf-5 and subsequently cloned and overexpressed in Escherichia coli. DNA sequence analysis revealed an open-reading frame of 921 bp, capable of encoding a polypeptide of 307 amino acids residues with a calculated isoelectric point of pH 5.4. The enzyme had an optimal pH and temperature of 7.0°C and 45°C, respectively, with a specific activity of 1.7 and 1.9 μmol min−1 mg protein−1 for succinonitrile and fumaronitrile, respectively. The molecular weight of the nitrilase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography was 33,000 and 138,000 Da, respectively, suggesting that the enzyme is homotetrameric. Among various nitriles, dinitriles were the preferred substrate of NitPf5 with a K m = 17.9 mM and k cat/K m = 0.5 mM−1 s−1 for succinonitrile. Homology modeling and docking studies of dinitrile and mononitrile substrate into the active site of NitPf5 shed light on the substrate specificity of NitPf5. Although nitrilases have been characterized from several other sources, P. fluorescens Pf-5 nitrilase NitPf5 is distinguished from other nitrilases by its high specific activity toward dinitriles, which make P. fluorescens NitPf5 useful for industrial applications, including enzymatic synthesis of various cyanocarboxylic acids.  相似文献   
29.
Immobilization of Bacillus licheniformis l-arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support−1) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q m) and affinity (k a). The pH and temperature for immobilization were optimized to be pH 7.1 and 33°C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k cat/K m) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t 1/2 increased from 2 to 275 h) at 50°C following immobilization.  相似文献   
30.
Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the administration of a combination of agents, with each agent targeted to the features of different subclones.Approximately half of the patients with pancreatic cancer are initially diagnosed with metastases to distal sites, with the commonest sites being the liver, lung, and peritoneum (1). Therapeutic strategies against metastases could help reduce the high mortality rates associated with this cancer (2). Understanding the nature of metastatic pancreatic cancer at a systems level can enable the discovery of potential targets for the development of targeted therapies.Pancreatic cancer has been shown to be a genetically evolving and heterogeneous disease (35). Clonal diversity and evolution of cancer genomes have also been demonstrated based on the isolation of distinct clonal populations purified directly from patient biopsies by means of flow cytometry followed by genomic characterization (6). A number of reports have documented the adoption of a proteomic approach for the discovery of potential biomarkers in pancreatic cancer (7, 8). However, these studies generally assume pancreatic cancers to be homogeneous, and the emphasis is placed on identifying molecules that are common across a broad array of tumors. There is a lack of studies systematically examining the proteomic changes or signaling pathways across pancreatic cancers to dissect the nature of the heterogeneity of each clone. An excellent setting in which the heterogeneity of tumors can be studied systematically is in a patient harboring metastases to several distant sites. To this end, we chose cells isolated from three metastatic pancreatic lesions of a single patient. The exomes of each tumor site were previously sequenced to study the progression of pancreatic cancer, and the results showed that all cell lines were identical for the genetic status of driver mutations (e.g. KRAS, TP53, and SMAD4) (9). Our hypothesis was that a better understanding of the proteomic consequences of the heterogeneity derived from genetic changes, and possibly other types of alterations, might provide additional opportunities to identify therapeutic targets.In order to precisely quantify differences across the proteomes of multiple metastatic pancreatic cancer lesions, we employed a SILAC-based1 quantitative proteomics strategy combined with high-resolution mass spectrometry (10, 11). Based on changes observed at the whole-proteome level, we found that a class of cell surface receptors showed significant enrichment with the highest alteration of their expression among the three metastatic pancreatic cancer cell lines examined (i.e. peritoneum, lung, and liver). Because the total protein levels provide information about the static levels of proteins and not their activity per se, we decided to examine the activation of phosphorylation-driven pathways, many of which are activated by cell surface receptors. To globally examine tyrosine phosphorylation-based signaling pathways, we carried out mass spectrometric analysis of purified tyrosine phosphorylated peptides enriched using anti-phosphotyrosine antibodies. As a result, we observed differential activation of tyrosine kinases in the three different sites of metastases. For example, Axl receptor tyrosine kinase was found to be hyperphosphorylated in lung and liver metastases relative to peritoneal metastasis. Expression of Axl receptor tyrosine kinase in primary and matched pancreatic cancers on tissue microarrays was validated by immunohistochemistry. Given such unique patterns of activation of pathways, it was possible that tumors derived from different sites could show differences in their sensitivity to pathway inhibitors. To test this, we performed experiments in which we screened cell lines derived from each metastatic site against a panel of small molecule inhibitors. We observed that the three metastatic pancreatic cancers had differential sensitivities to different inhibitors. For example, cells derived from the peritoneal metastasis were highly sensitive to lapatinib, whereas greater sensitivity to the Axl inhibitor R428 was observed in the lung metastasis cell line. Finally, we showed that treatment of mice bearing xenografts from these different pancreatic cancer cell lines with R428, an inhibitor of Axl receptor tyrosine kinase, led to reduction of tumors with evidence of activation of Axl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号