首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   29篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   11篇
  2015年   19篇
  2014年   16篇
  2013年   15篇
  2012年   23篇
  2011年   22篇
  2010年   24篇
  2009年   15篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
排序方式: 共有301条查询结果,搜索用时 31 毫秒
81.
γ-Secretase inhibitors have been shown to reduce the production of β-amyloid, a component of the plaques that are found in brains of patients with Alzheimer’s disease. A novel series of heterocyclic sulfonamide γ-secretase inhibitors that reduce β-amyloid levels in cells is reported. Several examples of compounds within this series demonstrate a higher propensity to inhibit the processing of amyloid precursor protein compared to Notch, an alternative γ-secretase substrate.  相似文献   
82.
An electrospun nonwoven matrix of polyamide nanofibers was employed as a new model for the capillary basement membrane at the blood-brain barrier (BBB). The basement membrane separates astrocytes from endothelial cells and is associated with growth factors, such as fibroblast growth factor-2 (FGF-2). FGF-2 is produced by astrocytes and induces specialized functions in endothelial cells, but also has actions on astrocytes. To investigate potential autocrine actions of FGF-2 at the BBB, astrocytes were cultured on unmodified nanofibers or nanofibers covalently modified with FGF-2. The former assumed an in vivo-like stellate morphology that was enhanced in the presence of cross-linked FGF-2. Furthermore, astrocyte monolayers established on unmodified nanofibers were more permissive for neurite outgrowth when cultured with an overlay of neurons than similar monolayers established on standard tissue culture surfaces, while astrocytes cultured on FGF-2-modifed nanofibers were yet more permissive. The observed differences were due in part to progressively increasing amounts of FGF-2 secreted by the astrocytes into the medium; hence FGF-2 increases its own expression in astrocytes to modulate astrocyte–neuron interactions. Soluble FGF-2 was unable to replicate the effects of cross-linked FGF-2. Nanofibers alone up-regulated FGF-2, albeit to a lesser extent than nanofibers covalently modified with FGF-2. These results underscore the importance of both surface topography and growth factor presentation on cellular function. Moreover, these results indicate that FGF-2-modified nanofibrillar scaffolds may demonstrate utility in tissue engineering applications for replacement and regeneration of lost tissue following central nervous system (CNS) injury or disease.  相似文献   
83.
Accumulation of beta-amyloid (Aβ), produced by the proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-secretase, is widely believed to be associated with Alzheimer’s disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) γ-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-β,β-diethylalaninol 7.b.2 (Aβ 40/42 EC50 = 28 nM), which is efficacious in reduction of Aβ production in vivo.  相似文献   
84.
Microbial oxidation potentials of extremophiles recovered from Pampo Sul oil field, Campos Basin, Brazil, in pure culture or in consortia, were investigated using high-throughput screening (HTS) and multibioreactions. Camphor (1), cis-jasmone (2), 2-methyl-cyclohexanone (3), 1,2-epoxyoctane (4), phenylethyl acetate (5), phenylethyl propionate (6), and phenylethyl octanoate (7) were used to perform multibioreaction assays. Eighty-two bacterial isolates were recovered from oil and formation water samples and those presenting outstanding activities in HTS assays were identified by sequencing their 16S rRNA genes. These results revealed that most microorganisms belonged to the genus Bacillus and presented alcohol dehydrogenase, monooxygenase, epoxide hydrolase, esterase, and lipase activities.  相似文献   
85.
86.
It was previously shown that glucagon and epinephrine have additive effects on both gluconeogenic and glycogenolytic flux. However, the changes in gluconeogenic substrates may have been limiting and thus may have prevented a synergistic effect on gluconeogenesis and a reciprocal inhibitory effect on glycogenolysis. Thus the aim of the present study was to determine if glucagon has a greater gluconeogenic and a smaller glycogenolytic effect in the presence of both epinephrine and clamped gluconeogenic precursors. Two groups (Epi and G + Epi + P) of 18-h-fasted conscious dogs were studied. In Epi, epinephrine was increased, and in G + Epi + P, glucagon and epinephrine were increased. Gluconeogenic precursors (lactate and alanine) were infused in G + Epi + P to match the rise that occurred in Epi. Insulin and glucose levels were also controlled and were similar in the two groups. Epinephrine and precursor administration increased glucagon's effect on gluconeogenesis (4.5-fold; P < 0.05) and decreased glucagon's effect on glycogenolysis (85%; P = 0.08). Thus, in the presence of both hormones, and when the gluconeogenic precursor supply is maintained, gluconeogenic flux is potentiated and glycogenolytic flux is inhibited.  相似文献   
87.
We have previously reported that the retinoic acid (RA) catabolizing enzyme CYP26A1 plays an important role in protecting tail bud tissues from inappropriate exposure to RA generated in the adjacent trunk tissues by RALDH2, and that Cyp26a1-null animals exhibit spina bifida and caudal agenesis. We now show that, in the absence of Cyp26a1, retinoic acid receptor gamma (RARgamma) mediates ectopic RA-signaling in the tail bud. We also show that activated RARgamma results in downregulation of Wnt3a and Fgf8, which integrate highly conserved signaling pathways known for their role in specifying caudal morphogenesis. Ablation of the gene for RARgamma (Rarg) rescues Cyp26a1-null mutant animals from caudal regression and embryonic lethality, thus demonstrating that CYP26A1 suppresses the RA-mediated downregulation of WNT3A and FGF8 signaling pathways by eliminating ectopic RA in gastrulating tail bud mesoderm.  相似文献   
88.
89.
Previously, we reported that tolerance to nickel, induced by oral administration of Ni(2+) ions, can be adoptively transferred to naive mice with only 10(2) splenic T cells. Here we show that 10(2) T cell-depleted spleen cells (i.e., APCs) from orally tolerized donors can also transfer nickel tolerance. This cannot be explained by simple passive transfer of the tolerogen. The APCs from orally tolerized donors displayed a reduced allostimulatory capacity, a tolerogenic phenotype, and an increased expression of CD38 on B cells. In fact, it was B cells among the APCs that carried the thrust of tolerogenicity. Through serial adoptive transfers with Ly5.1(+) donors and two successive sets of Ly5.2(+) recipients, we demonstrated that nickel tolerance was infectiously spread from donor to host cells. After the transfer of either T cells or APCs from orally tolerized donors, the spread of tolerance to the opposite cell type of the recipients (i.e., APCs and T cells, respectively) required recipient immunization with NiCl(2)/H(2)O(2). For the spread of tolerance from a given donor cell type, T cell or APC, to the homologous host cell type, the respective opposite cell type in the host was required as intermediate. We conclude that T suppressor cells and tolerogenic APCs induced by oral administration of nickel are part of a positive feedback loop that can enhance and maintain tolerance when activated by Ag associated with a danger signal. Under these conditions, APCs and T suppressor effector cells infectiously spread the tolerance to naive T cells and APCs, respectively.  相似文献   
90.
Immune (y) interferon production by murine T cell lymphomas   总被引:2,自引:0,他引:2  
Various cloned murine T cell hybridomas and T cell lymphomas were evaluated for their ability to produce interferon (IFN). Two T cell tumor clones, L12-R1 and L12-R4, derived from the spontaneously in vitro transformed cell lines L12 originally established from fetal calf serum-primed C57BL/6 spleen cells were found to produce high IFN amounts upon mitogen stimulation. Phorbol myristate acetate led to maximal IFN production (2187 IU) by L12-R4 cells at concentrations of 2 x 10(-7) M, whereas concanavalin A and phytohemagglutinin induced lower levels of IFN synthesis (160 to 243 IU). None of the cell lines tested produced IFN constitutively or upon lipopolysaccharides stimulation. The IFN was characterized as immune (y) by being labile at pH 2 and neutralized by two rabbit anti-murine IFN-y antisera but not by antiserum to murine leukocyte (alpha) and fibroblast (beta) IFN. Phenotypic characterization of IFN-y-producing cells showed the L12 clones to be Thy-1.2+, Lyt-1+, 23-, and Ig-. The L12-R4 tumor cell therefore provide a unique source of IFN-y for purification, and may represent a useful model for studying the molecular mechanisms involved in T cell differentiation leading to IFN-y production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号