首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   26篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   14篇
  2017年   9篇
  2016年   7篇
  2015年   16篇
  2014年   12篇
  2013年   20篇
  2012年   26篇
  2011年   20篇
  2010年   11篇
  2009年   17篇
  2008年   20篇
  2007年   21篇
  2006年   9篇
  2005年   7篇
  2004年   6篇
  2003年   10篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1980年   1篇
  1973年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
11.
12.

Background

Ceramides are intracellular lipid mediator implicated in various cellular responses, including oxidative stress and programmed cell death. Studies demonstrated strong links between ceramide and the mitochondria in the regulation of apoptosis. However, the mechanism of apoptosis induced by ceramides is not fully understood. The present study delineates importance of the redox state of cytochrome c for release of cytochrome c and apoptosis of human mammary adenocarcinoma MCF-7 and MDA-MB-231 cells induced by ceramides.

Methods

The study uses MCF-7 and MDA-MB-231 cells, isolated mitochondria, submitochondrial particles, and oxidized and reduced cytochrome c. Methods used include flow cytometry, immunoblotting, spectroscopy, and respirometry.

Results

We show that ceramides induce mitochondrial oxidative stress and release of cytochrome c from the mitochondria of these cells. Our findings show that ceramides react with oxidized cytochrome c whereas reduced cytochrome c does not react with ceramides. We also show that oxidized cytochrome c reacted with ceramides exerts lower reducibility and function to support mitochondrial respiration. Furthermore, our data show that glutathione protects cytochrome c of reacting with ceramides by increasing the reduced state of cytochrome c.

Conclusions

Ceramides induce oxidative stress and apoptosis in human mammary adenocarcinoma cells by interacting with oxidized cytochrome c leading to the release of cytochrome c from the mitochondria. Our findings suggest a novel mechanism for protective role of glutathione.

General significance

Our study suggests that the redox state of cytochrome c is important in oxidative stress and apoptosis induced by ceramides.  相似文献   
13.
Static cell culture has serious limitations in its ability to represent cellular behaviour within a live organism. In vivo, cells are constantly exposed to the flow of bodily fluids and contact with other cell types. Bioreactors provide the opportunity to study cells in an environment that more closely resembles the in vivo setting because cell cultures can be exposed to dynamic flow in contact with or in proximity to other cell types. In this study we compared the metabolic profile of a dynamic cell culture system to that of a static cell culture in three different cellular phenotypes: adipocytes, endothelial cells and hepatocytes. Albumin, glucose, free fatty acids, glycerol, and lactate were measured over 48 h. We show that all three cell types have increased glucose uptake in the presence of flow; lactate release was also significantly affected. We provide robust evidence that the presence of flow significantly modifies cellular metabolism. While flow provides a more uniform nutrient distribution and increases metabolite turnover, our results indicate that different cell types have specific metabolic responses to flow, suggesting cell-specific flow-regulated activation of metabolite signalling pathways.  相似文献   
14.
Thiazolidinediones (TZDs) are currently the most efficacious class of oral antidiabetics. However, they carry the burden of weight gain and haemodilution, which may lead to cardiovascular complications. The present study was designed to ascertain whether a combination of dipeptidyl peptidase IV (DPP IV) inhibitor with low dose of a thiazolidinedione absolves TZD associated weight gain and oedema without compromising its efficacy. In this study, we examined the efficacy and safety of lower dose (1 mg/kg/day) of rosiglitazone, a thiazolidinedione, in combination with 5 mg/kg/day dose of LAF-237 (vildagliptin), a known DPP IV inhibitor, in aged db/db mice after 14 days of treatment and compared the combination with therapeutic dose (10 mg/kg) of rosiglitazone. The combination therapy showed similar efficacy as that of 10 mg/kg/day rosiglitazone in lowering random blood glucose (53.8%, p<0.001 and 54.3%, p<0.001 respectively), AUC ((0-120) min) during oral glucose tolerance test (OGTT) (38.6 %, p<0.01; 38.3%, p<0.01 respectively) and triglyceride levels (63.9% and 61% respectively; p<0.01). Plasma active glucagon like peptide-1 (GLP-1) and insulin levels were found to be elevated significantly (p<0.01 and p<0.05 respectively) in both LAF-237 and combination treated groups following oral glucose load. LAF-237 alone had no effect on random glucose and glucose excursion during OGTT in severely diabetic db/db mice. Interestingly, the combination treatment showed no significant increase in body weight as compared to the robust weight gain by therapeutic dose of rosiglitazone. Rosiglitazone at 10 mg/kg/day showed significant reduction (p<0.05) in haematocrit, RBC count, haemoglobin pointing towards haemodilution associated with increased mRNA expression of Na(+), K(+)-ATPase-alpha and epithelial sodium channel gamma (ENaCgamma) in kidney. The combination therapy escaped these adverse effects. The results suggest that combination of DPP IV inhibitor with low dose of thiazolidinedione can interact synergistically to represent a therapeutic advantage for the clinical treatment of type 2 diabetes without the adverse effects of haemodilution and weight gain associated with thiazolidinediones.  相似文献   
15.
Circulating levels of inflammatory markers can predict cardiovascular disease risk. To identify genes influencing the levels of these markers, we genotyped 1,343 single-nucleotide polymorphisms (SNPs) in 1,184 African Americans from the Health, Aging and Body Composition (Health ABC) Study. Using admixture mapping, we found a significant association of interleukin 6 soluble receptor (IL-6 SR) with European ancestry on chromosome 1 (LOD 4.59), in a region that includes the gene for this receptor (IL-6R). Genotyping 19 SNPs showed that the effect is largely explained by an allele at 4% frequency in West Africans and at 35% frequency in European Americans, first described as associated with IL-6 SR in a Japanese cohort. We replicate this association (P<1.0x10-12) and also demonstrate a new association with circulating levels of a different molecule, IL-6 (P<3.4x10-5). After replication in 1,674 European Americans from Health ABC, the combined result is even more significant: P<1.0x10-12 for IL-6 SR, and P<2.0x10-9 for IL-6. These results also serve as an important proof of principle, showing that admixture mapping can not only coarsely localize but can also fine map a phenotypically important variant.  相似文献   
16.
Oxidative stress during cardiac arrest may inactivate myocardial enzymes and thereby exacerbate ischemic derangements of myocardial metabolism. This study examined the impact of cardiac arrest on left ventricular enzymes. Beagles were subjected to 5 min of cardiac arrest and 5 min of open-chest cardiac compressions (OCCC) before epicardial direct current countershocks were applied to restore sinus rhythm. Glutathione/glutathione disulfide redox state (GSH/GSSG) and a panel of enzyme activities were measured in snap-frozen left ventricle. To test whether oxidative stress during arrest inactivated the enzymes, metabolic (pyruvate) or pharmacological (N-acetyl-l-cysteine) antioxidants were infused intravenously for 30 min before arrest. During cardiac arrest, activities of phosphofructokinase, citrate synthase, aconitase, malate dehydrogenase, creatine kinase, glucose-6-phosphate dehydrogenase, and glutathione reductase fell by 56, 81, 55, 34, 42, 55, and 45%, respectively, coincident with 50% decline in GSH/GSSG. OCCC effected full recovery of glutathione reductase and partial recovery of citrate synthase and aconitase, in parallel with GSH/GSSG. Phosphofructokinase, malate dehydrogenase, creatine kinase, and glucose-6-phosphate dehydrogenase recovered only after cardioversion. Antioxidant pretreatments augmented phosphofructokinase, aconitase, and malate dehydrogenase activities before arrest and enhanced these activities, as well as those of citrate synthase and glucose-6-phosphate dehydrogenase, during arrest. In conclusion, cardiac arrest reversibly inactivates several important myocardial metabolic enzymes. Antioxidant protection of these enzymes implicates oxidative stress as a principal mechanism of enzyme inactivation during arrest.  相似文献   
17.
Asbestos is a ubiquitous, naturally occurring fiber that has been linked to the development of malignant and fibrotic lung diseases. Asbestos exposure leads to apoptosis, followed by compensatory proliferation, yet many of the signaling cascades coupled to these outcomes are unclear. Because CREs (Ca(2+)/cAMP-response elements) are found in the promoters of many genes important for regulation of proliferation and apoptosis, CREB (CRE binding protein) is likely to play an important role in the development of asbestos-mediated lung injury. To explore this possibility, we tested the hypotheses that asbestos exposure leads to CREB phosphorylation in lung epithelial cells and that protein kinase A (PKA) and extracellular signal-regulated kinases 1/2 (ERK1/2) are central regulators of the CREB pathway. Persistent CREB phosphorylation was observed in lung sections from mice following inhalation of crocidolite asbestos. Exposure of C10 lung epithelial cells to crocidolite asbestos led to rapid CREB phosphorylation and apoptosis that was decreased by the inhibition of PKA or ERK1/2 using the specific inhibitors H89 and U0126, respectively. Furthermore, crocidolite asbestos selectively induced a sustained increase in MAP kinase phosphatase-1 mRNA and protein. Silencing CREB protein dramatically reduced asbestos-mediated ERK1/2 phosphorylation, yet significantly increased the number of cells undergoing asbestos-induced apoptosis. These data reveal a novel and selective role for CREB in asbestos-mediated signaling through pathways regulated by PKA and ERK1/2, further providing evidence that CREB is an important regulator of apoptosis in asbestos-induced responses of lung epithelial cells.  相似文献   
18.
19.
20.
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号