首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12315篇
  免费   1187篇
  国内免费   10篇
  2022年   127篇
  2021年   262篇
  2020年   163篇
  2019年   177篇
  2018年   222篇
  2017年   208篇
  2016年   295篇
  2015年   496篇
  2014年   510篇
  2013年   625篇
  2012年   792篇
  2011年   810篇
  2010年   427篇
  2009年   428篇
  2008年   620篇
  2007年   595篇
  2006年   542篇
  2005年   541篇
  2004年   495篇
  2003年   481篇
  2002年   450篇
  2001年   142篇
  2000年   112篇
  1999年   115篇
  1998年   122篇
  1997年   84篇
  1996年   94篇
  1995年   85篇
  1994年   74篇
  1993年   77篇
  1992年   93篇
  1991年   79篇
  1990年   83篇
  1989年   94篇
  1988年   75篇
  1987年   85篇
  1986年   73篇
  1985年   81篇
  1984年   88篇
  1983年   92篇
  1982年   104篇
  1981年   105篇
  1980年   102篇
  1979年   84篇
  1978年   77篇
  1977年   87篇
  1976年   94篇
  1975年   71篇
  1974年   75篇
  1973年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Eukaryotic translation initiation factor-4E (eIF4E) recognizes and binds the m(7) guanosine nucleotide at the 5' end of eukaryotic messenger RNAs; this protein-RNA interaction is an essential step in the initiation of protein synthesis. The structure of eIF4E from wheat (Triticum aestivum) was investigated using a combination of x-ray crystallography and nuclear magnetic resonance (NMR) methods. The overall fold of the crystallized protein was similar to eIF4E from other species, with eight beta-strands, three alpha-helices, and three extended loops. Surprisingly, the wild-type protein did not crystallize with m(7)GTP in its binding site, despite the ligand being present in solution; conformational changes in the cap-binding loops created a large cavity at the usual cap-binding site. The eIF4E crystallized in a dimeric form with one of the cap-binding loops of one monomer inserted into the cavity of the other. The protein also contained an intramolecular disulfide bridge between two cysteines (Cys) that are conserved only in plants. A Cys-to-serine mutant of wheat eIF4E, which lacked the ability to form the disulfide, crystallized with m(7)GDP in its binding pocket, with a structure similar to that of the eIF4E-cap complex of other species. NMR spectroscopy was used to show that the Cys that form the disulfide in the crystal are reduced in solution but can be induced to form the disulfide under oxidizing conditions. The observation that the disulfide-forming Cys are conserved in plants raises the possibility that their oxidation state may have a role in regulating protein function. NMR provided evidence that in oxidized eIF4E, the loop that is open in the ligand-free crystal dimer is relatively flexible in solution. An NMR-based binding assay showed that the reduced wheat eIF4E, the oxidized form with the disulfide, and the Cys-to-serine mutant protein each bind m(7)GTP in a similar and labile manner, with dissociation rates in the range of 20 to 100 s(-1).  相似文献   
992.
The molecular chaperone HEAT SHOCK PROTEIN90 (HSP90) is essential for the maturation of key regulatory proteins in eukaryotes and for the response to temperature stress. Earlier, we have reported that fungi living in association with plants of the Sonoran desert produce small molecule inhibitors of mammalian HSP90. Here, we address whether elaboration of the HSP90 inhibitor monocillin I (MON) by the rhizosphere fungus Paraphaeosphaeria quadriseptata affects plant HSP90 and plant environmental responsiveness. We demonstrate that MON binds Arabidopsis (Arabidopsis thaliana) HSP90 and can inhibit the function of HSP90 in lysates of wheat (Triticum aestivum) germ. MON treatment of Arabidopsis seedlings induced HSP101 and HSP70, conserved components of the stress response. Application of MON, or growth in the presence of MON, allowed Arabidopsis wild type but not AtHSP101 knockout mutant seedlings to survive otherwise lethal temperature stress. Finally, cocultivation of P. quadriseptata with Arabidopsis enhanced plant heat stress tolerance. These data demonstrate that HSP90-inhibitory compounds produced by fungi can influence plant growth and responses to the environment.  相似文献   
993.
Oxidative stress has been implicated in intra-abdominal adhesion formation. Substance P, a neurokinin-1 receptor (NK-1R) ligand, facilitates leukocyte recruitment and reactive oxygen species (ROS) generation. We have shown in a rat model of adhesion formation that intraperitoneal administration of a NK-1R antagonist at the time of abdominal operation reduces postoperative adhesion formation. Thus we determined the effects of NK-1R antagonist administration on peritoneal leukocyte recruitment and oxidative stress within 24 h of surgery. Adhesions were induced in Wistar rats randomly assigned to receive the antagonist or vehicle intraperitoneally. Peritoneal tissue was isolated at 2, 4, 6, and 24 h after surgery for analysis of the oxidative stress biomarkers 8-isoprostane (8-IP), protein carbonyl, NADPH oxidase, myeloperoxidase (MPO), and ICAM-1 and VCAM-1 mRNAs. Total antioxidant capacity of peritoneal fluid was also determined. MPO, NADPH oxidase, 8-IP, and protein carbonyl were elevated (P < 0.05) by 6 h. ICAM-1 mRNA was elevated (P < 0.05) by 2 h, whereas VCAM-1 levels decreased (P < 0.05) at 24 h. The NK-1R antagonist delayed the MPO rise and reduced (P < 0.05) 8-IP levels by 6 h and ICAM-1 mRNA, VCAM-1 mRNA, and protein carbonyl at 2 h. The antagonist also increased (P < 0.05) the antioxidant capacity of peritoneal fluid at all time points. These data further support a role for oxidative stress in adhesion formation and suggest that the NK-1R antagonist may limit adhesions, in part, by reducing postoperative oxidative stress through an inhibition of neutrophil recruitment and an increase in peritoneal fluid antioxidant capacity.  相似文献   
994.
Mice expressing the Torpedo acetylcholine receptor alpha-chain as a neo-self-Ag exhibit a reduced frequency of T cells responding to the immunodominant epitope Talpha146-162 indicating a degree of tolerance. We characterized tolerance induction in these animals by analyzing the residual Talpha146-162-responsive T cell population and comparing it to that of nontransgenic littermates. Using CD4(high) sorting, we isolated the vast majority of Ag-reactive T cells from both strains of mice. Quantitative studies of the CD4(high) populations in transgenic mice following immunization with Talpha146-162 revealed a diminished expansion of cells expressing the canonical TCRBV6 but not other TCRBV gene segments when compared with nontransgenic littermates. In addition, CD4(high) cells from transgenic mice were functionally hyporesponsive to Talpha146-162 in terms of proliferation and cytokine secretion regardless of TCRBV gene segment use. TCR sequence analysis of transgenic Vbeta6(+)CD4(high) cells revealed a reduced frequency of cells expressing a conserved motif within the TCRbeta CDR3. Thus, the canonical Talpha146-162 responsive, Vbeta6(+) population demonstrates both quantitative and qualitative deficits that correlate with an altered TCR repertoire whereas the non-Vbeta6 population in transgenic mice exhibits only a reduction in peptide responsiveness, a qualitative defect. These data demonstrate that discrete autoreactive T cell populations with identical peptide/MHC specificity in Torpedo acetylcholine receptor-alpha-transgenic animals bear distinct tolerance imprints.  相似文献   
995.
Lab-reared sphingid and noctuid moths appear to feed less than wild moths, and often are starved to enhance responsiveness in feeding assays. To measure the impact of larval nutrition on adult feeding, we raised a model sphingid species, Manduca sexta, on control or modified diets (reduced sugar, protein or water, supplemented beta-carotene) or cut tobacco leaves, then conducted feeding assays with artificial flowers. Behaviour was scored and analysed in a double-blind manner. Larval diet affected adult eclosion time, size and fat content, the latter of which was inversely proportional to moth approaches to the floral array in a flight cage. In contrast, behaviours refractory to feeding (sitting, escaping) were associated with sex and barometric pressure, but not with diet or fat content. Frequency of floral approaches and probing was not associated with any variable. However, moths reared on beta-carotene-supplemented diet were 2-3 times more likely to feed, and significantly less likely to sit or show "escape" behaviour than were moths from most other treatments. Our results suggest that decreased visual sensitivity, rather than increased fat content, accounts for reduced adult feeding by lab-reared M. sexta.  相似文献   
996.
In this study, experiments were performed to determine the contribution of TLR9 to the generation of protective innate immunity against virulent bacterial pathogens of the lung. In initial studies, we found that the intratracheal administration of Klebsiella pneumoniae in wild-type (WT) BALB/c mice resulted in the rapid accumulation of dendritic cells (DC) expressing TLR9. As compared with WT mice, animals deficient in TLR9 (TLR9-/-) displayed significantly increased mortality that was associated with a >50-fold increase in lung CFU and a >400-fold increase in K. pneumoniae CFU in blood and spleen, respectively. Intrapulmonary bacterial challenge in TLR9-/- mice resulted in reduced lung DC accumulation and maturation as well as impaired activation of lung macrophages, NK cells, and alphabeta and gammadelta T cells. Mice deficient in TLR9 failed to generate an effective Th1 cytokine response following bacterial administration. The adoptive transfer of bone marrow-derived DC from syngeneic WT but not TLR9-/- mice administered intratracheally reconstituted antibacterial immunity in TLR9-/- mice. Collectively, our findings indicate that TLR9 is required for effective innate immune responses against Gram-negative bacterial pathogens and that approaches to maximize TLR9-mediated DC responses may serve as a means to augment antibacterial immunity in pneumonia.  相似文献   
997.
The plasmid R1162 encodes proteins that enable its conjugative mobilization between bacterial cells. It can transfer between many different species and is one of the most promiscuous of the mobilizable plasmids. The plasmid-encoded protein MobA, which has both nicking and priming activities on single-stranded DNA, is essential for mobilization. The nicking, or relaxase, activity has been localized to the 186 residue N-terminal domain, called minMobA. We present here the 2.1 A X-ray structure of minMobA. The fold is similar to that seen for two other relaxases, TraI and TrwC. The similarity in fold, and action, suggests these enzymes are evolutionary homologs, despite the lack of any significant amino acid similarity. MinMobA has a well- defined target DNA called oriT. The active site metal is observed near Tyr25, which is known to form a phosphotyrosine adduct with the substrate. A model of the oriT substrate complexed with minMobA has been made, based on observed substrate binding to TrwC and TraI. The model is consistent with observations of substrate base specificity, and provides a rationalization for elements of the likely enzyme mechanism.  相似文献   
998.
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.  相似文献   
999.
Mononuclear phagocyte (macrophages and microglia) dysfunction plays a significant role in the pathogenesis of human immunodeficiency virus (HIV) associated dementia (HAD) through the production and release of soluble neurotoxic factors including glutamate. The mechanism of glutamate regulation by HIV-1 infection remains unclear. In this report, we investigated whether the enzyme glutaminase is responsible for glutamate generation by HIV-1 infected monocyte-derived macrophages. We tested the functionality of novel small molecule inhibitors designed to specifically block the activity of glutaminase. Glutaminase inhibitors were first characterized in a kinetic assay with crude glutaminase from rat brain revealing an uncompetitive mechanism of inhibition. The inhibitors were then tested in vitro for their ability to prevent glutamate generation by HIV-infected macrophages, their effect upon macrophage viability, and HIV infection. To validate these findings, glutaminase specific siRNA was tested for its ability to prevent glutamate increase during infection. Our results show that both glutaminase specific small molecule inhibitors and glutaminase specific siRNA were effective at preventing increases in glutamate by HIV-1 infected macrophage. These findings support glutaminase as a potential component of the HAD pathogenic process and identify a possible therapeutic avenue for the treatment of neuroinflammatory states such as HAD.  相似文献   
1000.
A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7 family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gbeta5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2.Gbeta5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative alpha-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号