首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7782篇
  免费   773篇
  国内免费   6篇
  2021年   87篇
  2020年   53篇
  2019年   59篇
  2018年   91篇
  2017年   80篇
  2016年   123篇
  2015年   218篇
  2014年   205篇
  2013年   317篇
  2012年   351篇
  2011年   366篇
  2010年   201篇
  2009年   214篇
  2008年   335篇
  2007年   333篇
  2006年   309篇
  2005年   319篇
  2004年   315篇
  2003年   334篇
  2002年   332篇
  2001年   116篇
  2000年   93篇
  1999年   89篇
  1998年   90篇
  1997年   65篇
  1996年   86篇
  1995年   74篇
  1994年   66篇
  1993年   64篇
  1992年   91篇
  1991年   82篇
  1990年   85篇
  1989年   87篇
  1988年   65篇
  1987年   82篇
  1986年   69篇
  1985年   71篇
  1984年   89篇
  1983年   89篇
  1982年   91篇
  1981年   97篇
  1980年   98篇
  1979年   66篇
  1978年   72篇
  1977年   83篇
  1976年   89篇
  1975年   71篇
  1974年   71篇
  1973年   64篇
  1961年   48篇
排序方式: 共有8561条查询结果,搜索用时 15 毫秒
61.
M T Mas  R F Colman 《Biochemistry》1985,24(7):1634-1646
Spectroscopic, ultrafiltration, and kinetic studies have been used to characterize interactions of reduced and oxidized triphosphopyridine nucleotides (TPNH and TPN), 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P), and adenosine 2',5'-bisphosphate [Ado(2',5')P2] with with TPN-specific isocitrate dehydrogenase. Close similarity of the UV difference spectra and of the protein fluorescence changes accompanying the formation of the binary complexes provides evidence for the binding of these nucleotides to the same site on the enzyme. From the pH dependence of the dissociation constants for TPNH binding to TPN-specific isocitrate dehydrogenase in the absence and in the presence of Mn2+, over the pH range 5.8-7.6, it has been demonstrated that the nucleotide binds to the enzyme in its unprotonated, metal-free form. The involvement of positively charged residues, protonated over the pH range studied, has been postulated. One TPNH binding site per enzyme subunit has been measured by fluorescence and difference absorption titrations. A dramatic effect of ionic strength on binding has been demonstrated: about a 1000-fold decrease in the dissociation constant for TPNH has been observed at pH 7.6 upon decreasing ionic strength from 0.336 (Kd = 1.2 +/- 0.2 microM) to 0.036 M (Kd = 0.4 +/- 0.1 nM) in the presence and in the absence of 100 mM Na2SO4, respectively. Weak competition of sulfate ions for the nucleotide binding site has been observed (KI = 57 +/- 3 mM). The binding of TPN in the presence of 100 mM Na2SO4 at pH 7.6 is about 100-fold weaker (Kd = 110 +/- 22 microM) than the binding of the reduced coenzyme and is similarly affected by ionic strength. These results demonstrate the importance of electrostatic interactions in the binding of the coenzyme to TPN-specific isocitrate dehydrogenase. The large enhancement of protein fluorescence caused by binding of TPN and Rib-P2-Ado-P (delta Fmax = 50%) and of Ado(2',5')P2 (delta Fmax = 41%) has been ascribed to a local conformational change of the enzyme. An apparent stoichiometry of 0.5 nucleotide binding site per peptide chain was determined for TPN, Rib-P2-Ado-P, and Ado(2',5')P2 from fluorescence titrations, in contrast to one binding site per enzyme subunit determined from UV difference spectral titration and ultrafiltration experiments. Thus, the binding of one molecule of the nucleotide per dimeric enzyme molecule is responsible for the total increase in protein fluorescence, while binding to the second subunit does not cause further change.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
62.
We have studied the relationship between the timing of the late meiotic events that occur during progesterone-induced oocyte maturation, and intracellular protein transport. We have monitored the secretion of chick oviduct proteins from Xenopus laevis oocytes microinjected with polyadenylated mRNA and found that chick ovalbumin and lysozyme are not secreted during the second meiotic metaphase, in contrast to the earlier prophase stage. Maturation had no detectable effect on the glycosylation of ovalbumin, whereas it affected the glycosylation of chick ovomucoid. As maturation proceeded, the Golgi apparati disappeared in a polarized fashion, beginning in the vegetal half. This disappearance coincided temporally and spatially with that of the nuclear envelope. We speculate that Golgi apparatus disappearance and the block in secretion are causally related.  相似文献   
63.
Summary Calcium binding and Na–Ca exchange activity were measured in isolated cardiac plasma membrane vesicles under various ionic conditions. A model was developed to describe the Ca binding characteristics of cardiac sarcolemmal vesicles using the Gouy-Chapman theory of the diffuse double layer with specific cation binding to phospholipid carboxyl and phosphate groups. The surface association constants used for Ca, Na, K and H binding to both of these groups were 7, 0.63, 0.3 and 3800m –1, respectively. This model allows the estimation of surface [Ca] under any specific ionic conditions. The effects of the divalent screening cation, dimethonium, on Ca binding and Na–Ca exchange were compared. Dimethonium had no significant effect on Ca binding at high ionic strength (150mm KCl), but strongly depressed Ca binding at low ionic strength. Dimethonium had no significant effect on Na–Ca exchange (Na-inside dependent Ca influx) at either high or low ionic strength. These results suggest that the Ca sites of the Na–Ca exchanger are in a physical environment where they are either not exposed to or not sensitive to surface [Ca].  相似文献   
64.
Summary It is proposed that the first entity capable of adaptive Darwinian evolution consisted of a liposome vesicle formed of (1) abiotically produced phospholipidlike molecules; (2) a very few informational macromolecules; and (3) some abiogenic, lipid-soluble, organic molecule serving as a symporter for phosphate and protons and as a means of high-energy-bond generation. The genetic material had functions that led to the production of phospholipidlike materials (leading to growth and division of the primitive cells) and of the carrier needed for energy transduction. It is suggested that the most primitive exploitable energy source was the donation of 2H++2e at the external face of the primitive cell. The electrons were transferred (by metal impurities) to internal sinks of organic material, thus creating, via a deficit, a protonmotive force that could drive both the active transport of phosphate and high-energy-bond formation.This model implies that proton translocation in a closed-membrane system preceded photochemical or electron transport mechanisms and that chemically transferable metabolic energy was needed at a much earlier stage in the development of life than has usually been assumed. It provides a plausible mechanism whereby cell division of the earliest protocells could have been a spontaneous process powered by the internal development of phospholipids. The stimulus for developing this evolutionary sequence was the realization that cellular life was essential if Darwinian survival of the fittest was to direct evolution toward adaptation to the external environment.  相似文献   
65.
J R Arthur  R Boyne 《Life sciences》1985,36(16):1569-1575
Oxygen consumption and the activities of the selenoenzyme glutathione peroxidase, and of the hexose monophosphate shunt were lower than normal in neutrophils from Se deficient cattle. However, these activities and the activity of Cu/zinc superoxide dismutase were unaffected in neutrophils from Cu deficient cattle. These results are discussed with reference to impaired neutrophil microbicidal activity previously demonstrated to result from Se or Cu deficiency in cattle.  相似文献   
66.
Effect of External pH on the Internal pH of Chlorella saccharophila   总被引:6,自引:3,他引:3       下载免费PDF全文
Gehl KA  Colman B 《Plant physiology》1985,77(4):917-921
The overall internal pH of the acid-tolerant green alga, Chlorella saccharophila, was determined in the light and in the dark by the distribution of 5,5-dimethyl-2-[14C]oxazolidine-2,4-dione ([14C]DMO) or [14C]benzoic acid ([14C]BA) between the cells and the surrounding medium. [14C]DMO was used at external pH of 5.0 to 7.5 while [14C]BA was used in the range pH 3.0 to pH 5.5. Neither compound was metabolized by the algal cells and intracellular binding was minimal. The internal pH of the algae obtained with the two compounds at external pH values of 5.0 and 5.5 were in good agreement. The internal pH of C. saccharophila remained relatively constant at pH 7.3 over the external pH range of pH 5.0 to 7.5. Below pH 5.0, however, there was a gradual decrease in the internal pH to 6.4 at an external pH of 3.0. The maintenance of a constant internal pH requires energy and the downward drift of internal pH with a drop in external pH may be a mechanism to conserve energy and allow growth at acid pH.  相似文献   
67.
Polyamine (PA) titers and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17), enzymes which catalyze rate-limiting steps in PA biosynthesis, were monitored during tobacco ovary maturation. In the period between anthesis and fertilization, the protein content of ovary tissues rapidly increased by about 40% and was accompanied by approximately a 3-fold increase in ODC activity, while ADC activity remained nearly constant. PA titers also remained relatively unchanged until fertilization, at which time they increased dramatically and the DNA content of ovary tissues doubled. This increase in PA biosynthesis was correlated with a further 3-fold increase in ODC activity, reaching a maximum 3 to 4 days after fertilization. During this time, ADC activity increased only slightly and accounted for approximately 1% of the total decarboxylase activity when ODC activity peaked. The postfertilization burst of biosynthetic activities slightly preceded a period of rapid ovary enlargement, presumably due to new cell division. During later stages of ovary development, DNA levels fell precipitously, while PA titers and decarboxylase activities decreased to preanthesis levels more slowly. In this period, growth producing a 300% increase in ovary fresh weight appears to be the result of cell enlargement.

Synchronous changes in PA titers and in the rates of PA biosynthesis, macromolecular synthesis, and growth in the tobacco ovary suggest that PAs may play a role in the regulation of postfertilization growth and development of this reproductive organ.

  相似文献   
68.
Utilizing the method of P-M hybrid dysgenesis-mediated gene transfer to insert rosy locus DNA into various chromosomal locations, we recovered a transformed strain that carries an ry+ transposon inserted in or near the scalloped locus in polytene section 13F on the X chromosome. The resultant product, when stabilized, behaves as a homozygous and hemizygous viable and fertile extreme scalloped allele associated with wild-type expression of the rosy locus. We have labeled this allele, sdry+. This allele has been destabilized by subsequent P-M hybrid dysgenesis, and mutations were recovered that exhibit alterations in the rosy and/or scalloped phenotypes. Representative samples of all phenotypic classes have been characterized by Southern blot analyses of restricted DNA. The most common events are excisions of DNA wholly internal to the transposon and representing sections of rosy DNA. In addition to loss of rosy locus function, such excisions affect the scalloped locus expression.--A second dysgenesis experiment was carried out involving an ry+ transposon inserted in polytene section 16D on the X chromosome. A minimal estimate of the relative frequency of imprecise excisions, determined in this experiment is 75%.--A successful pilot experiment is described that utilizes dysgenic perturbation of the sdry+ allele to select for small deletions of the 5' noncoding region of the rosy locus.  相似文献   
69.
We have recently demonstrated that human high molecular weight kininogen (HMWK) is a pro-cofactor that is cleaved by kallikrein to yield a two-chain cofactor (HMWKa) and the nanopeptide bradykinin. This proteolysis enhances its association with an activating surface, an event necessary for expression of its cofactor activity. We now report that factor XIa is capable of hydrolyzing HMWK and releasing bradykinin in a purified system as well as cleaving and inactivating HMWK in a plasma environment during the contact-activation process. The profile of proteolysis differs from that produced by kallikrein and by factor XIIa in that the first cleavage by factor XIa yields 75- and 45-kDa polypeptides, whereas both factor XIIa and kallikrein initially produce 65- and 56-kDa species. Further proteolysis by all three enzymes eventually produces similar heavy chains (Mr = 65,000) and light chains (Mr = 45,000). However, the amount of factor XIa generated in plasma during contact activation further degrades the light chain of HMWK, eventually destroying its coagulant activity. Furthermore, in a purified system, enhancement of the degradation of HMWK coagulant activity by factor XIa was achieved when kallikrein was included in the incubation mixture, suggesting that the preferred substrate for factor XIa is the active form of HMWK (HMWKa), and not the pro-cofactor. These data suggest that factor XIa has the potential to act as a regulator of contact-activated coagulation by virtue of its ability to destroy the cofactor function of HMWK after its generation by either kallikrein, factor XIIa, or to a lesser extent, factor XIa, itself.  相似文献   
70.
Summary Moulting fluid ofManduca sexta contains high concentrations of potassium and bicarbonate (100 mM) and low concentrations of chloride (5 mM). This fluid begins to disappear from the exuvial space approximately 9–10 h before the actual shedding of the integument. During this time, the integument can be isolated in an Ussing cell and electrical properties measured in vitro. In a normal 32 mM KHCO3 saline, potential difference (PD) is around 10 mV, exuvial side positive, and short-circuit current (SCC) is 15–20 A cm–2. Substitution of chloride slightly reduces both PD and SCC, although resistance does not change significantly. Measurement of chloride transport in the absence of K+ indicates that 100% of the SCC can be accounted for by the net chloride flux (2 A cm–2). TheK m andJ max for transepithelial chloride transport are 14 mM and 0.1 Eq cm–2 h–1. Bilateral potassium addition stimulates chloride transport, doubling net chloride flux as potassium concentration increases from 2 to 5 mM. Chloride net flux is not inhibited by the presence of furosemide (1 mM), nor in HCO 3 -free saline by thiocyanate (1 or 10 mM) or acetazolamide (0.1 mM), but is inhibited by 100% N2. The pattern of chloride transport inM. sexta is similar to that previously reported for the rectum of locusts. As chloride is normally at low concentrations in the moulting fluid, it is suggested that this transport system acts to maintain low intracellular concentrations which may be necessary for enzymatic functions in the epidermal cells and has little importance in fluid transport.Abbreviations PD potential difference - PPI pharate pupal integument - SCC short circuit current In the time since this research was performed, A.M. Jungreis passed away. He will be missed by his friends and colleagues  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号