首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3257篇
  免费   265篇
  国内免费   2篇
  3524篇
  2023年   8篇
  2022年   44篇
  2021年   56篇
  2020年   45篇
  2019年   55篇
  2018年   75篇
  2017年   63篇
  2016年   96篇
  2015年   156篇
  2014年   175篇
  2013年   190篇
  2012年   276篇
  2011年   238篇
  2010年   176篇
  2009年   146篇
  2008年   205篇
  2007年   236篇
  2006年   200篇
  2005年   179篇
  2004年   202篇
  2003年   149篇
  2002年   138篇
  2001年   32篇
  2000年   25篇
  1999年   17篇
  1998年   34篇
  1997年   20篇
  1996年   22篇
  1995年   20篇
  1994年   20篇
  1993年   14篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   15篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   7篇
  1982年   10篇
  1981年   9篇
  1980年   11篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1975年   7篇
  1974年   6篇
  1966年   5篇
  1931年   6篇
排序方式: 共有3524条查询结果,搜索用时 0 毫秒
991.
The control of chlorophyll (Chl) synthesis in angiosperms depends on the light-operating enzyme protochlorophyllide oxidoreductase (POR). The interruption of Chl synthesis during darkness requires suppression of the synthesis of 5-aminolevulinic acid (ALA), the first precursor molecule specific for Chl synthesis. The inactivation of glutamyl-tRNA reductase (GluTR), the first enzyme in tetrapyrrole biosynthesis, accomplished the decreased ALA synthesis by the membrane-bound protein FLUORESCENT (FLU) and prevents overaccumulation of protochlorophyllide (Pchlide) in the dark. We set out to elucidate the molecular mechanism of FLU-mediated inhibition of ALA synthesis, and explored the role of each of the three structural domains of mature FLU, the transmembrane, coiled-coil and tetratricopeptide repeat (TPR) domains, in this process. Efforts to rescue the FLU knock-out mutant with truncated FLU peptides revealed that, on its own, the TPR domain is insufficient to inactivate GluTR, although tight binding of the TPR domain to GluTR was detected. A truncated FLU peptide consisting of transmembrane and TPR domains also failed to inactivate GluTR in the dark. Similarly, suppression of ALA synthesis could not be achieved by combining the coiled-coil and TPR domains. Interaction studies revealed that binding of GluTR and POR to FLU is essential for inhibiting ALA synthesis. These results imply that all three FLU domains are required for the repression of ALA synthesis, in order to avoid the overaccumulation of Pchlide in the dark. Only complete FLU ensures the formation of a membrane-bound ternary complex consisting at least of FLU, GluTR and POR to repress ALA synthesis.  相似文献   
992.
Most emerging infectious diseases are zoonoses originating from wildlife among which vector‐borne diseases constitute a major risk for global human health. Understanding the transmission routes of mosquito‐borne pathogens in wildlife crucially depends on recording mosquito blood‐feeding patterns. During an extensive longitudinal survey to study sylvatic anophelines in two wildlife reserves in Gabon, we collected 2,415 mosquitoes of which only 0.3% were blood‐fed. The molecular analysis of the blood meals contained in guts indicated that all the engorged mosquitoes fed on wild ungulates. This direct approach gave only limited insights into the trophic behavior of the captured mosquitoes. Therefore, we developed a complementary indirect approach that exploits the occurrence of natural infections by host‐specific haemosporidian parasites to infer Anopheles trophic behavior. This method showed that 74 infected individuals carried parasites of great apes (58%), ungulates (30%), rodents (11%) and bats (1%). Accordingly, on the basis of haemosporidian host specificity, we could infer different feeding patterns. Some mosquito species had a restricted host range (An. nili only fed on rodents, whereas An. carnevalei, An. coustani, An. obscurus, and An. paludis only fed on wild ungulates). Other species had a wider host range (An. gabonensis could feed on rodents and wild ungulates, whereas An. moucheti and An. vinckei bit rodents, wild ungulates and great apes). An. marshallii was the species with the largest host range (rodents, wild ungulates, great apes, and bats). The indirect method substantially increased the information that could be extracted from the sample by providing details about host‐feeding patterns of all the mosquito species collected (both fed and unfed). Molecular sequences of hematophagous arthropods and their parasites will be increasingly available in the future; exploitation of such data with the approach we propose here should provide key insights into the feeding patterns of vectors and the ecology of vector‐borne diseases.  相似文献   
993.
994.
Given a large number of genes with unknown functions in model organisms, collections of mutants are valuable resources for studying gene function. For the mouse, embryonic stem cell technology offers the possibility to manipulate the genome and select for mutations in vitro. Mutant mice can then be generated from clones of interest to study the phenotype of these animals. We manipulate the genome of mouse embryonic stem (ES) cells chemically using the mutagen trimethylpsoralen (TMP). TMP predominantly causes deletions in the genome of Caenorhabditis elegans and Escherichia coli, but has not been established as a mutagen in mammalian systems yet. We have characterized TMP as a mutagen for mouse ES cells regarding death rates, mutation frequencies, and mutation spectrum. Allowing for 12.5% of cell survival, the mutation frequency at the mouse hypoxanthine-guanine phosphoribosyltransferase (Hprt) locus was 3.5 x 10(-5) on average. The characterization of a non-redundant set of 17 Hprt-deficient ES clones revealed that only 12% of clones contained genomic deletions and almost 50% were point mutations. Base substitutions were mostly transversions and all affected AT base pairs. We conclude that the mutation spectrum of TMP in mouse ES cells is different from that observed in C. elegans and E. coli.  相似文献   
995.
The conversion of pregna-4,9(11)-diene-17alpha,21-diol-3,20-dione 21-acetate (I) and 17,21-diacetate (VI) by Nocardioides simplex VKM Ac-2033D was studied. The major metabolites formed from I were identified as pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione 21-acetate (II) and pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione (IV). Pregna-4,9(11)-diene-17alpha,21-diol-3,20-dione (III) and pregna-1,4,9(11)-triene-17alpha,20beta,21-triol-3-one (V) were formed in minorities. Biotransformation products formed from VI were pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione 17,21-diacetate (VII), pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione 21-acetate (II), pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione (IV), pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione 17-acetate (VIII), pregna-1,4,9(11)-triene-17alpha,20beta,21-triol-3-one (V). The conversion pathways were proposed including 1(2)-dehydrogenation, deacetylation, 20beta-reduction and non-enzymatic migration of acyl group from position 17 to 21. The conditions providing predominant accumulation of pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione 21-acetate (II) from I and pregna-1,4,9(11)-triene-17alpha,21-diol-3,20-dione 17-acetate (VIII) from VI in a short-term biotransformation were determined.  相似文献   
996.
This study describes the effects of 5-azacytidine (5-azaC) on the development of diploid parthenogenetic embryos (PE) of CBA, C57BL/6 and (CBA × C57BL/6)F1 mice in vitro at the 1-cell or the blastocyst stage or in vivo after implantation. Our findings indicate that genomic imprinting is modulated by genetic background. Non-fertilized C57BL/6 eggs form diploid parthenogenetic blastocysts at a much higher frequency than CBA eggs. Eggs from F1 hybrid females form parthenogenetic blastocysts at an approximately intermediate level between these inbred strains of mice. C57BL/6 PE do not develop to the somite stages. In contrast, CBA PE and F1 PE develop to various somite stages. Following administration of 5–azaC at 1.0 μmol/L in vitro at the 1- -cell stage, the number of implantations of C57BL/6 PE transferred to pseudopregnant females increased. In contrast, the number of implantations and somite F1 PE did not significantly change following exposure to 5–azaC. However, administration of 5-azaC at the 1-cell stage stimulates development of somite F1 PE. Administration of 5-azaC at 0.2 and 1.0 μmol/L in vitro at the blastocyst stage did not change the number of implantations of C57BL/6 PE. However, the number of implantations and somite CBA PE decreased. After injection of 5azaC at 0.24mg/kg in vivo at day 8 of gestation, some F1 PE developed to 26–35 somites compared with a maximum of 25 somites in controls. The different effects of 5-azaC on the development of PE depend upon the mouse strain used and the stage of development.  相似文献   
997.
To reveal phylogeographic features of sable (Martes zibellina) in the southeast part of its range, we analyzed variability of the mitochondrial DNA (mtDNA) cytochrome b gene, tRNA (Pro), tRNA (Thr) and control region (D-loop) sequences from 78 specimens in populations of the Russian Far East, northeast China, and Mongolia. Our results revealed the presence of 49 different haplotypes split into two major phylogenetic groups—clades A and B, the latter separated into two clades, B1 and B2. Comparative analysis of D-loop haplotypes in populations originating from the southeast (Russian Far East, China and Mongolia) and the west (northern Urals) portions of sable range indicated that all three mtDNA clades were present in different regional groups. However, highest diversity of clade B1 in northeast China and its nearly complete absence from the Urals suggest that the southeast sable range, being a refuge during Pleistocene glacial periods, can be considered the center of genetic diversification and possibly origin of this species. All divergence estimates fall within the Pleistocene suggesting that Quarternary glaciations played an important role in phylogeographic differentiation of sable.  相似文献   
998.
Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi‐trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient‐replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.  相似文献   
999.

Background

The endothelial PAS domain protein 1 (EPAS1) activates genes that are involved in erythropoiesis and angiogenesis, thus favoring a better delivery of oxygen to the tissues and is a plausible candidate to influence athletic performance. Using innovative statistical methods we compared genotype distributions and interactions of EPAS1 SNPs rs1867785, rs11689011, rs895436, rs4035887 and rs1867782 between sprint/power athletes (n = 338), endurance athletes (n = 254), and controls (603) in Polish and Russian samples. We also examined the association between these SNPs and the athletes’ competition level (‘elite’ and ‘sub-elite’ level). Genotyping was performed by either Real-Time PCR or by Single-Base Extension (SBE) method.

Results

In the pooled cohort of Polish and Russian athletes, 1) rs1867785 was associated with sprint/power athletic status; the AA genotype in rs1867785 was underrepresented in the sprint/power athletes, 2) rs11689011 was also associated with sprint/power athletic status; the TT genotype in rs11689011 was underrepresented sprint/power athletes, and 3) the interaction between rs1867785, rs11689011, and rs4035887 was associated with sprint/power athletic performance; the combinations of the AA genotype in rs4035887 with either the AG or GG genotypes in rs1867785, or with the CT or CC genotypes in rs11689011, were underrepresented in two cohorts of sprint/power athletes.

Conclusions

Based on the unique statistical model rs1867785/rs11689011 are strong predictors of sprint/power athletic status, and the interaction between rs1867785, rs11689011, and rs4035887 might contribute to success in sprint/power athletic performance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-382) contains supplementary material, which is available to authorized users.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号