首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   18篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   6篇
  2012年   16篇
  2011年   20篇
  2010年   16篇
  2009年   8篇
  2008年   20篇
  2007年   13篇
  2006年   15篇
  2005年   12篇
  2004年   11篇
  2003年   16篇
  2002年   19篇
  2001年   8篇
  2000年   11篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1959年   1篇
  1955年   1篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有254条查询结果,搜索用时 15 毫秒
141.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1–326 (hRPA701–326), and a fragment of the human XPA protein, residues 98–219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H–15N correlation spectrum of uniformly 15N-labeled hRPA701–326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA701–326 fragment. The hRPA701–326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA701–326 suggests that a competitive binding mechanism mediates the formation of the RPA–XPA complex. To determine whether a ternary complex could form between hRPA701–326, XPA-MBD and ssDNA, a 1H–15N correlation spectrum was acquired for uniformly 15N-labeled hRPA701–326 after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA701–326 in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA701–326 suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA701–326 may be modulated by ssDNA.  相似文献   
142.
As part of a high-throughput, structural proteomic project we have used NMR spectroscopy to determine the solution structure and ascertain the function of a previously unknown, conserved protein (MtH895) from the thermophilic archeon Methanobacterium thermoautotrophicum. Our findings indicate that MtH895 contains a central four-stranded beta-sheet core surrounded by two helices on one side and a third on the other. It has an overall fold superficially similar to that of a glutaredoxin. However, detailed analysis of its three-dimensional structure along with molecular docking simulations of its interaction with T7 DNA polymerase (a thioredoxin-specific substrate) and comparisons with other known members of the thioredoxin/glutaredoxin family of proteins strongly suggest that MtH895 is more akin to a thioredoxin. Furthermore, measurement of the pK(a) values of its active site thiols along with direct measurements of the thioredoxin/glutaredoxin activity has confirmed that MtH895 is, indeed, a thioredoxin and exhibits no glutaredoxin activity. We have also identified a group of previously unknown proteins from several other archaebacteria that have significant (34-44%) sequence identity with MtH895. These proteins have unusual active site -CXXC- motifs not found in any known thioredoxin or glutaredoxin. On the basis of the results presented here, we predict that these small proteins are all members of a new class of truncated thioredoxins.  相似文献   
143.
144.
145.
abbreviationsUBL, ubiquitin-like modifier; Saccharomyces cerevisiae, S. cerevisiae; Eschericia coli, E. coli; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser enhancement; NOESY, NOE spectroscopy; TOCSY, total correlated spectroscopy.  相似文献   
146.
The structure of MTH538, a previously uncharacterized hypothetical protein from Methanobacterium thermoautotrophicum, has been determined by NMR spectroscopy. MTH538 is one of numerous structural genomics targets selected in a genome-wide survey of uncharacterized sequences from this organism. MTH538 is a so-called singleton, a sequence not closely related to any other (known) sequences. The structure of MTH538 closely resembles the known structures of receiver domains from two component response regulator systems, such as CheY, and is similar to the structures of flavodoxins and GTP-binding proteins. Tests on MTH538 for characteristic activities of CheY and flavodoxin were negative. MTH538 did not become phosphorylated in the presence of acetyl phosphate and Mg(2+), although it appeared to bind Mg(2+). MTH538 also did not bind flavin mononucleotide (FMN) or coenzyme F(420). Nevertheless, sequence and structure parallels between MTH538/CheY and two families of ATPase/phosphatase proteins suggest that MTH538 may have a role in a phosphorylation-independent two-component response regulator system.  相似文献   
147.
The dorsal-ventral axis of amphibian embryos is specified by the "cortical rotation," a translocation of the egg cortex relative to the vegetal yolk mass. The mechanism of cortical rotation is not understood but is thought to involve an array of aligned, commonly oriented microtubules. We have demonstrated an essential requirement for kinesin-related proteins (KRPs) in the cortical rotation by microinjection beneath the vegetal cortex of an antipeptide antibody recognising multiple Xenopus egg KRPs. Time-lapse videomicroscopy revealed a striking local inhibition of the cortical rotation around the injection site, indicating that KRP-mediated translocation of the cortex is generated by forces acting across the vegetal subcortical region. Anti-tubulin immunofluorescence showed that the antibody disrupted both formation and maintenance of the aligned microtubule array. Direct examination of rhodamine-labelled microtubules by confocal microscopy showed that the anti-KRP antibody provoked striking three-dimensional flailing movement of the subcortical microtubules. In contrast, microtubules in antibody-free regions undulated only within the plane of the cortex, a significant population exhibiting little or no net movement. These findings suggest that KRPs have a critical role during cortical rotation in tethering microtubules to the cortex and that they may not contribute significantly to the translocation force as previously thought.  相似文献   
148.
Deoxythymidine diphosphate (dTDP)-4-keto-6-deoxy-d-hexulose 3, 5-epimerase (RmlC) is involved in the biosynthesis of dTDP-l-rhamnose, which is an essential component of the bacterial cell wall. The crystal structure of RmlC from Methanobacterium thermoautotrophicum was determined in the presence and absence of dTDP, a substrate analogue. RmlC is a homodimer comprising a central jelly roll motif, which extends in two directions into longer beta-sheets. Binding of dTDP is stabilized by ionic interactions to the phosphate group and by a combination of ionic and hydrophobic interactions with the base. The active site, which is located in the center of the jelly roll, is formed by residues that are conserved in all known RmlC sequence homologues. The conservation of the active site residues suggests that the mechanism of action is also conserved and that the RmlC structure may be useful in guiding the design of antibacterial drugs.  相似文献   
149.
Cul7 is a member of the Cullin Ring Ligase (CRL) family and is required for normal mouse development and cellular proliferation. Recently, a region of Cul7 that is highly conserved in the p53-associated, Parkin-like cytoplasmic protein PARC, was shown to bind p53 directly. Here we identify the CPH domains (conserved domain within Cul7, PARC, and HERC2 proteins) of both Cul7 and PARC as p53 interaction domains using size exclusion chromatography and NMR spectroscopy. We present the first structure of the evolutionarily conserved CPH domain and provide novel insight into the Cul7-p53 interaction. The NMR structure of the Cul7-CPH domain reveals a fold similar to peptide interaction modules such as the SH3, Tudor, and KOW domains. The p53 interaction surface of both Cul7 and PARC CPH domains was mapped to a conserved surface distinct from the analogous peptide-binding regions of SH3, KOW, and Tudor domains, suggesting a novel mode of interaction. The CPH domain interaction surface of p53 resides in the tetramerization domain and is formed by residues contributed by at least two subunits.  相似文献   
150.
RAD6 is a ubiquitin E2 protein with roles in a number of different biological processes. Here, using affinity purification coupled with mass spectrometry, we identify a number of new RAD6 binding partners, including the poorly characterized ubiquitin E3 ligases KCMF1 (potassium channel modulatory factor 1) and UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4), a protein that can bind N-end rule substrates, and which was recently linked to lysosome-mediated degradation and autophagy. NMR, combined with in vivo and in vitro interaction mapping, demonstrate that the KCMF1 C terminus binds directly to RAD6, whereas N-terminal domains interact with UBR4 and other intracellular vesicle- and mitochondria-associated proteins. KCMF1 and RAD6 colocalize at late endosomes and lysosomes, and cells disrupted for KCMF1 or RAD6 function display defects in late endosome vesicle dynamics. Notably, we also find that two different RAD6A point mutants (R7W and R11Q) found in X-linked intellectual disability (XLID) patients specifically lose the interaction with KCMF1 and UBR4, but not with other previously identified RAD6 interactors. We propose that RAD6-KCMF1-UBR4 represents a unique new E2-E3 complex that targets unknown N-end rule substrates for lysosome-mediated degradation, and that disruption of this complex via RAD6A mutations could negatively affect neuronal function in XLID patients.RAD6 is a ubiquitin E2 conjugating protein that plays a number of important roles in eukaryotes, including histone H2B ubiquitylation, postreplication DNA damage repair and degradation of proteins via the N-end rule pathway (1, 2). This wide variety of functions is mediated via interactions with at least five different ubiquitin E3 ligases, which target the multipurpose E2 to a diverse array of substrates.In mammals, RAD6 is encoded by two genes, UBE2A (the protein product of this gene has historically been referred to as RAD6A) and UBE2B (RAD6B). The human UBE2A gene is located on the X chromosome (Xq24) and the UBE2B locus maps to 5q31.1 (3). The human RAD6 proteins share ∼95% identity at the amino acid level (supplemental Fig. S1), and the two variants appear to play redundant roles in processes such as DNA damage repair (4). Both RAD6A and RAD6B are present in all tissues and cell lines examined (albeit at varying ratios), with highest mRNA levels measured in heart, testis, and brain (5).Previous reports have identified a variety of UBE2A coding sequence mutations in X-linked intellectual disability (XLID)1 patients (610), and a recent study revealed that human and Drosophila cells deficient for RAD6 function display defects in mitochondrial turnover and vesicle dynamics (6). However, the consequences of the XLID RAD6A mutations at the molecular level have not been well characterized, and the proteins that couple RAD6 to these new functions had not been identified.Here, we used an unbiased AP-MS (affinity purification coupled with mass spectrometry) approach to identify RAD6 interacting partners in human cells. Interestingly, we identify two new RAD6-associated E3 proteins, KCMF1 and UBR4, along with several additional interactors previously linked (via genetic and/or biochemical evidence) to intracellular vesicle trafficking and mitochondrial function. Using a combination of in vivo and in vitro binding assays combined with NMR spectroscopy, our data suggest that the KCMF1 protein recruits RAD6 to UBR4, a noncanonical N-recognin recently implicated in bulk lysosomal degradation and autophagy (11, 12). Consistent with this observation, knockdown of KCMF1 or RAD6A expression alters late endosome-lysosome vesicle trafficking. Finally, we demonstrate that two different RAD6A mutant proteins (R7W, R11Q) expressed in XLID patients maintain protein-protein interactions in vivo with all previously reported RAD6-associated E3s, but specifically lose the interaction with KCMF1 and UBR4. Together our data suggest that a RAD6-KCMF1-UBR4 complex targets unknown N-end rule substrates to the lysosome, and that this function is likely to be compromised in some XLID patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号