首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   31篇
  国内免费   1篇
  414篇
  2023年   2篇
  2022年   6篇
  2021年   17篇
  2020年   13篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   23篇
  2015年   18篇
  2014年   23篇
  2013年   25篇
  2012年   31篇
  2011年   36篇
  2010年   11篇
  2009年   12篇
  2008年   18篇
  2007年   28篇
  2006年   5篇
  2005年   7篇
  2004年   14篇
  2003年   8篇
  2002年   8篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1997年   2篇
  1996年   4篇
  1994年   3篇
  1992年   6篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
101.
Coastal sand mining for metals involves extraction of heavy mineral sands (HMS), which are sedimentary deposits of dense minerals that accumulate in coastal environments. HMS are localized concentrations of ores such as ilmenite, rutile, leucoxene, and iron, which are sources of metals such as titanium, zircon, iron, sillimanite/kyanite, staurolite, monazite, and garnet. The applications of these metals range from everyday products such as ceramics, paint, and pigments, as well as technologically advanced applications in the airline, shipbuilding, medicine, and defense industries. HMS extraction implies strip mining of coastal areas, which are often unique biodiversity ecosystems, or fragile ecosystems built up on sandy soils or dunes. The loss of such spaces has impacts such as loss of biodiversity and habitats, salt-water intrusion into agricultural lands and increased exposure to sea level rise. As a result of the serious ecological and socioeconomic transformations at such extraction frontiers, these operations cause resistance movements across the world. This article identifies and documents 24 cases of resistance against such operations. It presents the first comprehensive database and analysis of HMS related ecological distribution conflicts.  相似文献   
102.
1. Multiple predator interactions may profoundly alter ecological community dynamics and can complicate predictions of simpler pairwise predator–prey interaction strengths. In particular, multiple predator effects may lessen or enhance prey risk, with implications for community-level stability. Such emergent effects may modulate natural enemy efficacy towards target organisms. 2. In the present study, a functional response approach was used to quantify emergent multiple predator effects among natural enemies towards the disease vector mosquito complex, Culex pipiens. Conspecific multiple predator–predator interactions of the cyclopoid copepod Macrocyclops albidus (intermediate predator) were quantified by comparing multiple predator consumption simulations, based on individual consumption rates, with multiple predator consumption rates that were experimentally observed. Further, the study examined the influence of the presence of a predator at a higher trophic level, Chaoborus flavicans, on copepod group predation. 3. Both predators displayed type II functional responses, with C. flavicans consuming significantly more prey than M. albidus individually. Overall consumption levels of mosquitoes increased with greater predator density and richness. Antagonistic or synergistic emergent multiple predator effects between conspecifics of M. albidus were not detected, and the higher-level predator did not reduce effects of the intermediate predator. Accordingly, evidence for additive multiple predator interactions was found. 4. The lack of predator–predator interference between cyclopoid copepods and larval chaoborid midges provides strong support for their combined application in mosquito biocontrol. It is proposed that there should be increased examination of multiple predator effects in assessments of natural enemy efficacies to better understand overall predatory effects within communities and utilities in vector control.  相似文献   
103.
Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.  相似文献   
104.
The translocase of the outer membrane (TOM) mediates the membrane permeation of mitochondrial matrix proteins. Tom20 is a subunit of the TOM complex and binds to the N-terminal region (ie, presequence) in mitochondrial matrix precursor proteins. Previous experimental studies indicated that the presequence recognition by Tom20 was achieved in a dynamic-equilibrium among multiple bound states of the α-helical presequence. Accordingly, the co-crystallization of Tom20 and a presequence peptide required a disulfide-bond cross-linking. A 3-residue spacer sequence (XAG) was inserted between the presequence and the anchoring Cys residue at the C-terminus to not disturb the movement of the presequence peptide in the binding site of Tom20. Two crystalline forms were obtained according to Ala or Tyr at the X position of the spacer sequence, which may reflect the dynamic-equilibrium of the presequence. Here, we have performed replica-exchange molecular dynamics (REMD) simulations to study the effect of disulfide-bond linker and single amino acid difference in the spacer region of the linker on the conformational dynamics of Tom20-presequence complex. Free energy and network analyses of the REMD simulations were compared against previous simulations of non-tethered system. We concluded that the disulfide-bond tethering did not strongly affect the conformational ensemble of the presequence peptide in the complex. Further investigation showed that the choice of Ala or Tyr at the X position did not affect the most distributions of the conformational ensemble of the presequence. The present study provides a rational basis for the disulfide-bond tethering to study the dynamics of weakly binding complexes.  相似文献   
105.
106.

Background

Cancer immunotherapy uses one’s own immune system to fight cancerous cells. As immune system is hard-wired to distinguish self and non-self, cancer immunotherapy is predicted to target cancerous cells specifically, therefore is less toxic than chemotherapy and radiation therapy, two major treatments for cancer. Cancer immunologists have spent decades to search for the specific targets in cancerous cells.

Methods

Due to the recent advances in high throughput sequencing and bioinformatics, evidence has merged that the neoantigens in cancerous cells are probably the cancer-specific targets that lead to the destruction of cancer.We will review the transplantable murine tumor models for cancer immunotherapy and the bioinformatics tools used to navigate mouse genome to identify tumor-rejecting neoantigens.

Results

Several groups have independently identified point mutations that can be recognized by T cells of host immune system. It is consistent with the note that the formation of peptide-MHC I-TCR complex is critical to activate T cells. Both anchor residue and TCR-facing residue mutations have been reported. While TCR-facing residue mutations may directly activate specific T cells, anchor residue mutations improve the binding of peptides to MHC I molecules, which increases the presentation of peptides and the T cell activation indirectly.

Conclusions

Our work indicates that the affinity of neoepitopes for MHC I is not a predictor for anti-tumor immune responses in mice. Instead differential agretopic index (DAI), the numerical difference of epitope-MHC I affinities between the mutated and un-mutated sequences is a significant predictor. A similar bioinformatics pipeline has been developed to generate personalized vaccines to treat human ovarian cancer in a Phase I clinical trial.
  相似文献   
107.
Journal of Industrial Microbiology & Biotechnology - Microbial electron uptake (EU) is the biological capacity of microbes to accept electrons from electroconductive solid materials. EU has...  相似文献   
108.
Of the factors tested, the source and concentration of carbon and nitrogen in the medium exerted maximum effect on growth and acid production. Glucose (15%) and urea (0.14%) induced glucose oxidase synthesis and optimum yield of calcium gluconate. Potassium dihydrogen phosphate (0.2%) and magnesium sulphate (0.06%) stimulated glucose oxidase activity and calcium gluconate production. Borax at a concentration of 1.5 g/L induced maximum glucose oxidase and calcium gluconate production with increased glucose utilization.  相似文献   
109.
Bacterial ribosomes or their 50S subunit can refold many unfolded proteins. The folding activity resides in domain V of 23S RNA of the 50S subunit. Here we show that ribosomes can also refold a denatured chaperone, DnaK, in vitro, and the activity may apply in the folding of nascent DnaK polypeptides in vivo. The chaperone was unusual as the native protein associated with the 50S subunit stably with a 1:1 stoichiometry in vitro. The binding site of the native protein appears to be different from the domain V of 23S RNA, the region with which denatured proteins interact. The DnaK binding influenced the protein folding activity of domain V modestly. Conversely, denatured protein binding to domain V led to dissociation of the native chaperone from the 50S subunit. DnaK thus appears to depend on ribosomes for its own folding, and upon folding, can rebind to ribosome to modulate its general protein folding activity.  相似文献   
110.
A microfabricated array bioreactor for perfused 3D liver culture   总被引:9,自引:0,他引:9  
We describe the design, fabrication, and performance of a bioreactor that enables both morphogenesis of 3D tissue structures under continuous perfusion and repeated in situ observation by light microscopy. Three-dimensional scaffolds were created by deep reactive ion etching of silicon wafers to create an array of channels (through-holes) with cell-adhesive walls. Scaffolds were combined with a cell-retaining filter and support in a reactor housing designed to deliver a continuous perfusate across the top of the array and through the 3D tissue mass in each channel. Reactor dimensions were constructed so that perfusate flow rates meet estimated values of cellular oxygen demands while providing fluid shear stress at or below a physiological range (<2 dyne cm(2)), as determined by comparison of numerical models of reactor fluid flow patterns to literature values of physiological shear stresses. We studied the behavior of primary rat hepatocytes seeded into the reactors and cultured for up to 2 weeks, and found that cells seeded into the channels rearranged extensively to form tissue like structures and remained viable throughout the culture period. We further observed that preaggregation of the cells into spheroidal structures prior to seeding improved the morphogenesis of tissue structure and maintenance of viability. We also demonstrate repeated in situ imaging of tissue structure and function using two-photon microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号