首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   77篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   11篇
  2012年   19篇
  2011年   17篇
  2010年   13篇
  2009年   4篇
  2008年   16篇
  2007年   16篇
  2006年   22篇
  2005年   16篇
  2004年   16篇
  2003年   15篇
  2002年   18篇
  2001年   18篇
  2000年   8篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   2篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1983年   2篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1975年   2篇
  1966年   1篇
排序方式: 共有341条查询结果,搜索用时 31 毫秒
231.
A 35-mer polypeptide isolated from the hemolymph of desert locust Schistocerca gregaria (SG) proved to be a canonical inhibitor of bovine trypsin (K(i) = 0.2 microM). Despite having a trypsin-specific arginine at the primary specificity P(1) site, it inhibits bovine chymotrypsin almost as well (K(i) = 2 microM). Furthermore, while the latter reactivity improves 10(4)-fold by the single replacement of P(1) Arg by Leu, changing P(1)' from Lys to Met only moderately improves trypsin affinity (K(i) = 30 nM). The apparent low compatibility to trypsin, however, is not observed vs two arthropodal trypsins: SG peptides with P(1) Arg inhibit crayfish and shrimp trypsins with K(i) values in the picomolar range. This unprecedented high discrimination between orthologous enzymes is postulated to derive from flexibility differences in the protein-protein interaction. The more than four orders of magnitude phylum selectivity makes these peptides prospective candidates for agricultural use.  相似文献   
232.
Impaired skin wound healing is a significant comorbid condition of diabetes that is caused by poor microcirculation, among other factors. Studies have shown that angiogenesis, a critical step in the wound healing process in diabetic wounds, can be promoted under hypoxia. In this study, an angiogenesis‐promoting topical treatment for diabetic wounds, which promotes angiogenesis by mimicking a hypoxic environment via inhibition of prolyl hydroxylase resulting in elevation or maintenance of hypoxia‐inducible factor, was investigated utilizing a custom‐built multimodal microscopy system equipped with phase‐variance optical coherence tomography (PV‐OCT) and fluorescence lifetime imaging microscopy (FLIM). PV‐OCT was used to track the regeneration of the microvasculature network, and FLIM was used to assess the in vivo metabolic response of mouse epidermal keratinocytes to the treatment during healing. Results show a significant decrease in the fluorescence lifetime of intracellular reduced nicotinamide adenine dinucleotide, suggesting a hypoxic‐like environment in the wounded skin, followed by a quantitative increase in blood vessel density assessed by PV‐OCT. Insights gained in these studies could lead to new endpoints for evaluation of the efficacy and healing mechanisms of wound‐healing drugs in a setting where delayed healing does not permit available methods for evaluation to take place.   相似文献   
233.
The membrane-bound hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii were purified extensively and compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of each hydrogenase revealed two prominent protein bands, one near 60 kilodaltons and the other near 30 kilodaltons. The migration distances during nondenaturing polyacrylamide gel electrophoresis were similar for all except A. vinelandii hydrogenase, which migrated further than the other three. The amino acid composition of each hydrogenase was determined, revealing substantial similarity among these enzymes. This was confirmed by calculation of S delta Q values, which ranged from 8.0 to 26.7 S delta Q units. S delta Q is defined as sigma j(Xi,j-Xk,j)2, where i and k identify the proteins compared and Xj is the content (residues per 100) of a given amino acid of type j. The hydrogenases of this study were also compared with an enzyme-linked immunosorbent assay. Antibody raised against B. japonicum hydrogenase cross-reacted with all four hydrogenases, but to various degrees and in the order B. japonicum greater than A. latus greater than A. eutrophus greater than A. vinelandii. Antibody raised against A. eutrophus hydrogenase also cross-reacted with all four hydrogenases, following the pattern of cross-reaction A. eutrophus greater than A. latus = B. japonicum greater than A. vinelandii. Antibody raised against B. japonicum hydrogenase inhibited B. japonicum hydrogenase activity to a greater extent than the A. eutrophus and A. latus activities; no inhibition of A. vinelandii hydrogenase activity was detected. The results of these experiments indicated remarkable homology of the hydrogenases from these four microorganisms.  相似文献   
234.
L C Seefeldt  D J Arp 《Biochimie》1986,68(1):25-34
Azotobacter vinelandii hydrogenase has been purified to homogeneity from membranes. The enzyme was solubilized with Triton X-100 followed by ammonium sulfate-hexane extractions to remove lipids and detergent. The enzyme was then purified by carboxymethyl-Sepharose and octyl-Sepharose column chromatography. All purification steps were performed under anaerobic conditions in the presence of dithionite and dithiothreitol. The enzyme was purified 143-fold from membranes to a specific activity of 124 mumol of H2 uptake . min-1 . mg protein-1. Nondenaturing polyacrylamide gel electrophoresis of the hydrogenase revealed a single band which stained for both activity and protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands corresponding to peptides of 67,000 and 31,000 daltons. Densitometric scans of the SDS-gel indicated a molar ratio of the two bands of 1.07 +/- 0.05. The molecular weight of the native enzyme was determined by three different methods. While gel permeation gave a molecular weight of 53,000, sucrose density gradient centrifugation and native polyacrylamide gel electrophoresis gave molecular weights of 98,600 +/- 10,000 and 98,600 +/- 2,000, respectively. We conclude that the A. vinelandii hydrogenase is an alpha beta dimer (98,000 daltons) with subunits of 67,000 and 31,000 daltons. Analyses for nickel and iron indicated 0.68 +/- 0.01 mol Ni/mol hydrogenase and 6.6 +/- 0.5 mol Fe/mol hydrogenase. The isoelectric point of the enzyme was 6.1 +/- 0.01. In addition, several catalytic properties of the enzyme have been examined. The Km for H2 was 0.86 microM, and H2 evolution was observed in the presence of reduced methyl viologen. The pH profile of enzyme activity with methylene blue as the electron acceptor has been determined, along with the Km and Vmax for various electron acceptors.  相似文献   
235.
Rasche ME  Arp DJ 《Plant physiology》1989,91(2):663-668
Dihydrogen, a by-product of biological nitrogen fixation, is a competitive inhibitor of N2 reduction by nitrogenase. To evaluate the significance of H2 inhibition in vivo, we have measured the apparent inhibition constant for H2 inhibition of N2 reduction in Bradyrhizobium japonicum bacteroids isolated from soybean nodules. The rate of N2 reduction was measured as ammonia production by bacteroids incubated in a buffer containing 200 micromolar leghemoglobin and 10 millimolar succinate under 0.02 atmosphere O2 and various concentrations of N2 and H2. The apparent inhibition constant for H2 under these conditions was determined to be approximately 0.03 atmosphere. This relatively low value strengthens the proposal that H2 inhibition of N2 reduction may be a significant factor in lowering the efficiency of nitrogen fixation in legume nodules.  相似文献   
236.
The inhibitory effects of 15 hydrocarbons and halogenated hydrocarbons on NH3 oxidation by ammonia monooxygenase (AMO) in intact cells of the nitrifying bacterium Nitrosomonas europaea were determined. Determination of AMO activity, measured as NO2- production, required coupling of hydroxylamine oxidoreductase (HAO) activity with NH3-dependent NH2OH production by AMO. Hydrazine, an alternate substrate for HAO, was added to the reaction mixtures as a source of reductant for AMO. Most inhibitors exhibited competitive or noncompetitive inhibition patterns. The competitive character generally decreased (KiE/KiES increased) as the molecular size of the inhibitors increased. For example, CH4 and C2H4 were competitive inhibitors of NH3 oxidation, whereas the remaining alkanes (up to C4) and monohalogenated (Cl, Br, I) alkanes were noncompetitive. Oxidation of C2H5Br (noncompetitive) increased as the NH4+ concentration increased up to 40 mM, whereas oxidations of inhibitors with competitive character (KiE KiES) were diminished at 40 mM NH4+. Multichlorinated compounds produced nonlinear Lineweaver-Burk plots. Iodinated alkanes (CH3I, C2H5I) and C2Cl4 were potent inhibitors of NH3 oxidation. Maximum rates of NH3, C2H4, and C2H6 oxidations were approximately equivalent, suggesting a common rate-determining step. These data support an active-site model for AMO consisting of an NH3-binding site and a second site that binds noncompetitive inhibitors, with oxidation occurring at either site.  相似文献   
237.
Nitrosomonas europaea, an obligate ammonia-oxidizing bacterium, lost an increasing amount of ammonia oxidation activity upon exposure to increasing concentrations of nitrite, the primary product of ammonia-oxidizing metabolism. The loss of activity was specific to the ammonia monooxygenase (AMO) enzyme, as confirmed by a decreased rate of NH4+-dependent O2 consumption, some loss of active AMO molecules observed by polypeptide labeling with 14C2H2, the protection of activity by substrates of AMO, and the requirement for copper. The loss of AMO activity via nitrite occurred under both aerobic and anaerobic conditions, and more activity was lost under alkaline than under acidic conditions except in the presence of large concentrations (20 mM) of nitrite. These results indicate that nitrite toxicity in N. europaea is mediated by a unique mechanism that is specific for AMO.  相似文献   
238.
The effects of limiting concentrations of ammonium on the metabolic activity of Nitrosomonas europaea, an obligate ammonia-oxidizing soil bacterium, were investigated. Cells were harvested during late logarithmic growth and were incubated for 24 h in growth medium containing 0, 15, or 50 mM ammonium. The changes in nitrite production and the rates of ammonia- and hydroxylamine-dependent oxygen consumption were monitored. In incubations without ammonium, there was little change in the ammonia oxidation activity after 24 h. With 15 mM ammonium, an amount that was completely consumed, there was an 85% loss of the ammonia oxidation activity after 24 h. In contrast, there was only a 35% loss of the ammonia oxidation activity after 24 h in the presence of 50 mM ammonium, an amount that was not consumed to completion. There was little effect on the hydroxylamine oxidation activity in any of the incubations. The loss of ammonia oxidation activity was not due to differences in steady-state levels of ammonia monooxygenase (AMO) mRNA (amoA) or to degradation of the active site-containing subunit of AMO protein. The incubations were also conducted at a range of pH values to determine whether the loss of ammonia oxidation activity was correlated to the residual ammonium concentration. The loss of ammonia oxidation activity after 24 h was less at lower pH values (where the unoxidized ammonium concentration was higher). When added in conjunction with limiting ammonium, short-chain alkanes, which are alternative substrates for AMO, prevented the loss of ammonia oxidation activity at levels corresponding to their binding affinity for AMO. These results suggest that substrates of AMO can preserve the ammonia-oxidizing activity of N. europaea in batch incubations by protecting either AMO itself or other molecules associated with ammonia oxidation.  相似文献   
239.
Incubation of cells of the nitrifying bacterium Nitrosomonas europaea with 14C2H2 results in the covalent attachment of 14C label to a membrane-bound polypeptide of an approximate Mr of 28,000 (Hyman, M.R., and Wood, P.M. (1985) Biochem. J. 227, 719-725). A labeling procedure using 14C2H2 generated from Ba14CO3 has been used to investigate the correlation between the extent of covalent modification of this polypeptide by 14C from 14C2H2 and the level of ammonia oxidizing activity in whole cells. The time-dependent inactivation of ammonia monooxygenase by 14C2H2 resulted in a progressive and saturable incorporation of 14C into a 27-kDa polypeptide. In contrast, the specific, time-dependent and complete inactivation of ammonia monooxygenase by light resulted in concomitant decrease in the ability of cells to incorporate 14C from 14C2H2 into this polypeptide. The 14C2H2 labeling procedure was also used to investigate the recovery of ammonia monooxygenase activity after complete inactivation of pre-existing ammonia monooxygenase by either C2H2 or light. The recovery of ammonia monooxygenase activity was closely correlated with a recovery of ability of cells to incorporate 14C label from 14C2H2 into the 27-kDa polypeptide. This recovery process was energy (NH4+)-dependent and was inhibited by chloramphenicol and rifampicin, implying that de novo protein synthesis was required. Additional polypeptides labeled with 14C from 14CO2 were also identified during recovery from C2H2 or light inactivation of ammonia monooxygenase.  相似文献   
240.
M R Hyman  C Y Kim    D J Arp 《Journal of bacteriology》1990,172(9):4775-4782
Carbon disulfide has long been recognized as a potent inhibitor of nitrification, and it is the likely active component in several nitrification inhibitors suitable for field use. The effects of this compound on Nitrosomonas europaea have been investigated, and the site of action has been determined. Low concentrations of CS2 (less than 400 microM) produced a time-dependent inhibition of ammonia-dependent O2 uptake but did not inhibit hydrazine-oxidizing activity. CS2 also produced distinct changes in difference spectra of whole cells. These results suggest that ammonia monooxygenase (AMO) is the site of action of CS2. Unlike the case for thiourea and acetylene, saturating concentrations of CS2 did not fully inhibit AMO, and the inhibition resulted in a low but significant rate of ammonia-dependent O2 uptake. The effects of CS2 were not competitive with respect to ammonia concentration, and the inhibition by CS2 did not require the turnover of AMO to take effect. The ability of CS2-treated cells to incorporate [14C]acetylene into the 28-kilodalton polypeptide of AMO was used to demonstrate that the effects of CS2 are compatible with a mode of action which involves a reduction of the rate of turnover of AMO without effects on the catalytic mechanism. It is proposed that CS2 may act on AMO by reversibly reacting with a suitable nucleophilic amino acid in close proximity to the active site copper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号