Benzene and a variety of substituted benzenes inhibited ammonia oxidation by intact cells of Nitrosomonas europaea. In most cases, the inhibition was accompanied by transformation of the aromatic compound to a more oxidized product or products. All products detected were aromatic, and substituents were often oxidized but were not separated from the benzene ring. Most transformations were enhanced by (NH4)2SO4 (12.5 mM) and were prevented by C2H2, a mechanism-based inactivator of ammonia monooxygenase (AMO). AMO catalyzed alkyl substituent hydroxylations, styrene epoxidation, ethylbenzene desaturation to styrene, and aniline oxidation to nitrobenzene (and unidentified products). Alkyl substituents were preferred oxidation sites, but the ring was also oxidized to produce phenolic compounds from benzene, ethylbenzene, halobenzenes, phenol, and nitrobenzene. No carboxylic acids were identified. Ethylbenzene was oxidized via styrene to two products common also to oxidation of styrene; production of styrene is suggestive of an electron transfer mechanism for AMO. Iodobenzene and 1,2-dichlorobenzene were oxidized slowly to halophenols; 1,4-dichlorobenzene was not transformed. No 2-halophenols were detected as products. Several hydroxymethyl (-CH2OH)-substituted aromatics and p-cresol were oxidized by C2H2-treated cells to the corresponding aldehydes, benzaldehyde was reduced to benzyl alcohol, and o-cresol and 2,5-dimethylphenol were not depleted. 相似文献
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft. 相似文献
Pituitary adenylate cyclase activating polypeptide (PACAP) is present in the cranial arteries and trigeminal sensory neurons. We therefore examined the alterations in PACAP-like immunoreactivity (PACAP-LI) in a time-dependent manner in two rat models of trigeminovascular system (TS) activation. In one group chemical stimulation (CS) was performed with i.p. nitroglycerol (NTG), and in the other one the trigeminal ganglia (TRG) were subjected to electrical stimulation (ES). The two biologically active forms, PACAP-38 and PACAP-27, were determined by means of radioimmunoassay (RIA) and mass spectrometry (MS) in the plasma, the cerebrospinal fluid (CSF), the trigeminal nucleus caudalis (TNC), the spinal cord (SC) and the TRG. The tissue concentrations of PACAP-27 were 10 times lower than those of PACAP-38 in the TNC and SC, but about half in the TRG. PACAP-38, but not PACAP-27, was present in the plasma. Neither form could be identified in the CSF. PACAP-38-LI in the plasma, SC and TRG remained unchanged after CS, but it was increased significantly in the TNC 90 and 180 min after NTG injection. In response to ES of the TRG, the level of PACAP-38 in the plasma and the TNC was significantly elevated 90 and 180 min later, but not in the SC or the TRG. The alterations in the levels of PACAP-27 in the tissue homogenates in response to both forms of stimulation were identical to those of PACAP-38. The selective increases in both forms of PACAP in the TNC suggest its important role in the central sensitization involved in migraine-like headache. 相似文献
Amylin, a 37-aa pancreatic peptide, was found to be expressed in the preoptic area of mother rats in our recent microarray study. Here, we report a marked increase in amylin expression around parturition and show that amylin mRNA level remains elevated as long as the pups are not removed from the dams. Amylin expression is also induced in maternally behaving (sensitized) nonlactating but not in nonsensitized nulliparous females or in females that did not become maternal despite the sensitization procedure. Immunohistochemistry verified the increased amylin peptide expression in maternally behaving rats and demonstrated the same expression pattern of amylin as in situ hybridization histochemistry. Ovariectomy had no effect on the activation of amylin neurons, suggesting sexual steroid-independent mechanisms. In subsequent functional experiments, mothers were separated from their pups for 22 h. On return of the pups, neuronal activation was found in the mother's preoptic area, with a distribution pattern similar to amylin-expressing neurons. Subsequent double labeling revealed that 86-93% of amylin neurons were activated by pup exposure. The results implicate amylin in the control of maternal adaptations, possibly exerting its actions on maternal behaviors via amylin receptors present in brain regions to which preoptic neurons project. 相似文献
Nitrosomonas europaea, as an ammonia-oxidizing bacterium, has a high Fe requirement and has 90 genes dedicated to Fe acquisition. Under Fe-limiting conditions (0.2 μM Fe), N. europaea was able to assimilate up to 70% of the available Fe in the medium even though it is unable to produce siderophores. Addition of exogenous siderophores to Fe-limited medium increased growth (final cell mass). Fe-limited cells had lower heme and cellular Fe contents, reduced membrane layers, and lower NH3- and NH2OH-dependent O2 consumption activities than Fe-replete cells. Fe acquisition-related proteins, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and enterobactin and diffusion protein OmpC, were expressed to higher levels under Fe limitation, providing biochemical evidence for adaptation of N. europaea to Fe-limited conditions. 相似文献
Nocardioides sp. strain JS614 grows on the C2 alkenes ethene (Eth), vinyl chloride, and vinyl fluoride as sole carbon sources. The presence of 400–800 μM ethene oxide
(EtO) extended the growth substrate range to propene (C3) and butene (C4). Propene-dependent growth of JS614 was CO2 dependent and was prevented by the carboxylase/reductase inhibitor 2-bromoethanesulfonic acid, sodium salt (BES), while growth
on Eth was not CO2 dependent or BES sensitive. Although unable to promote growth, both propene and propene oxide (PrO)-induced expression of
the genes encoding the alpha subunit of alkene monooxygenase (etnC) and epoxyethane CoM transferase (etnE) to similar levels as did Eth and EtO. Propene was transformed by Eth-grown and propene-grown/EtO-induced JS614 to PrO at
a rate 4.2 times faster than PrO was consumed. As a result PrO accumulated in growth medium to 900 μM during EtO-induced growth
on propene. PrO (50–100 μM) exerted inhibitory effects on growth of JS614 on both acetate and Eth, and on EtO-induced growth
on Eth. However, higher EtO concentrations (300–400 μM) overcame the negative effects of PrO on Eth-dependent growth. 相似文献
Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line. 相似文献
The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.