首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   3篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   14篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1958年   1篇
  1938年   1篇
排序方式: 共有174条查询结果,搜索用时 593 毫秒
31.
Sire, J.‐Y. and Arnulf, I. 2000. Structure and development of the ctenial spines on the scales of a teleost fish, the cichlid Cichlasoma nigrofasciatum. — Acta Zoologica (Stockholm) 81 : 139–158 Numerous teleost species possess ctenoid scales characterized by the presence of ctenial spines arranged in rows (the cteni) along their posterior, free margin. Whilst the morphology and function of the ctenial spines are similar to those of odontodes (extra‐oral teeth), e.g. in armored catfish, their homology is questionable. To address this problem, we have studied ctenial spine development, structure, attachment to a bony support, and replacement with the aim of comparing these features to those described for odontodes. The ctenial spines have been studied in a growth series of the cichlid Cichlasoma nigrofasciatum, using light, scanning and transmission electron microscopy. Ctenial spines are entirely constituted of a collagen matrix. They lack a pulp cavity and, although their distal end can be in contact with the epidermal basal layer cells, they are not covered by an enameloid‐like tissue. They are attached to the scale by means of a narrow strand of unmineralized collagen matrix acting as a ligament and allowing spines to be movable. The ctenial spines develop as prolongations of the external layer of the scale, a woven‐fibroid collagen matrix, and subsequently grow by addition of parallel‐fibred collagen matrix. New ctenial spines are added at the posterior scale border in waves that follow the same rhythm as the deposition of circuli in the anterior region. From the focus region to the scale border, the ctenial spines constitute lines in which only the most posterior ctenial spine is functional. The other spines that are no longer functional are not shed but resorbed from the top, and their attachment region mineralizes and thickens by deposition of new material. The remnants of spines constitute the main part of the superficial layer of the scale in which anchoring bundles attach; this region is covered afterwards by the limiting layer, a tissue devoid of collagen fibrils. Because of their tooth‐like morphology (shape and size), their posterior orientation and their attachment to the scale surface, the ctenial spines resemble odontodes. Moreover, both elements perform a similar hydrodynamic function. Nevertheless, the structure and development of the ctenial spines differ completely from those of odontodes and consequently, they cannot be considered homologous elements. Ctenial spines and odontodes in teleosts provide us with a beautiful example of homoplasy; they share shape and function, but have a different origin as evidenced by their different structure and process of development.  相似文献   
32.

Background

Clinically significant portal hypertension (CSPH), defined as hepatic venous pressure gradient (HVPG) ≥10 mmHg, causes major complications. HVPG is not always available, so a non-invasive tool to diagnose CSPH would be useful. VWF-Ag can be used to diagnose. Using the VITRO score (the VWF-Ag/platelet ratio) instead of VWF-Ag itself improves the diagnostic accuracy of detecting cirrhosis/ fibrosis in HCV patients.

Aim

This study tested the diagnostic accuracy of VITRO score detecting CSPH compared to HVPG measurement.

Methods

All patients underwent HVPG testing and were categorised as CSPH or no CSPH. The following patient data were determined: CPS, D’Amico stage, VITRO score, APRI and transient elastography (TE).

Results

The analysis included 236 patients; 170 (72%) were male, and the median age was 57.9 (35.2–76.3; 95% CI). Disease aetiology included ALD (39.4%), HCV (23.4%), NASH (12.3%), other (8.1%) and unknown (11.9%). The CPS showed 140 patients (59.3%) with CPS A; 56 (23.7%) with CPS B; and 18 (7.6%) with CPS C. 136 patients (57.6%) had compensated and 100 (42.4%) had decompensated cirrhosis; 83.9% had HVPG ≥10 mmHg. The VWF-Ag and the VITRO score increased significantly with worsening HVPG categories (P<0.0001). ROC analysis was performed for the detection of CSPH and showed AUC values of 0.92 for TE, 0.86 for VITRO score, 0.79 for VWF-Ag, 0.68 for ELF and 0.62 for APRI.

Conclusion

The VITRO score is an easy way to diagnose CSPH independently of CPS in routine clinical work and may improve the management of patients with cirrhosis.  相似文献   
33.
Present knowledge on reservoir hosts of Trypanosoma rhodesiense, T. gambiense and T. brucei in Africa and T. cruzi and T. rangeli in America and experimental transmission studies of T. cruzi in mammalian hosts and in lizards is discussed. The difficulty in differentiating the African species of human trypanosomes, which appear not to be host specific, is a major obstacle to epizootiological studies.  相似文献   
34.
The purpose of this study was to identify the herpes simplex virus glycoprotein(s) that mediates the adsorption of virions to cells. Because heparan sulfate moieties of cell surface proteoglycans serve as the receptors for herpes simplex virus adsorption, we tested whether any of the viral glycoproteins could bind to heparin-Sepharose in affinity chromatography experiments. Two glycoproteins, gB and gC, bound to heparin-Sepharose and could be eluted with soluble heparin. In order to determine whether virions devoid of gC or gB were impaired for adsorption, we quantitated the binding of wild-type and mutant virions to cells. We found that at equivalent input concentrations of purified virions, significantly fewer gC-negative virions bound to cells than did wild-type or gB-negative virions. In addition, the gC-negative virions that bound to cells showed a significant delay in penetration compared with wild-type virus. The impairments in adsorption and penetration of the gC-negative virions can account for their reduced PFU/particle ratios, which were found to be about 5 to 10% that of wild-type virions, depending on the host cell. Although gC is dispensable for replication of herpes simplex virus in cell culture, it clearly facilitates virion adsorption and enhances infectivity by about a factor of 10.  相似文献   
35.
Malonate, Malonyl-Coenzyme A, and Acetyl-Coenzyme A in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: Free malonate, malonyl-coenzyme A (malonyl-CoA), and acetyl-CoA were assayed in rat brain at developmental ages from the 20th day of gestation to 60 days of postnatal life. The determination of malonate was based on its conversion to malonyl-CoA and decarboxylation to acetyl-CoA by enzyme extracts from Pseudo-monas fluorescens. The resulting acetyl-CoA reacted with [4-14C]oxaloacetate to form [5-14C]citrate, which was isolated by TLC. Malonyl-CoA in perchloric acid extracts from brain was converted to acetyl-CoA by rat liver mitochondrial malonyl-CoA decarboxylase (EC 4.1.1.9). Acetyl-CoA derived from this step was assayed by a modified CoA-cycling procedure. Brain acetyl-CoA was also assayed by CoA cycling. Prenatal brain contained no free malonate but malonyl-CoA was present. The acetyl-CoA level was relatively high just prior to birth and declined slightly with growth. Malonate concentrations after birth rose rapidly to reach 192 nmol/g wet weight at 60 days. Adult levels for malonyl-CoA and acetyl-CoA were 1.83 and 1.90 nmol/g wet weight, respectively. The origin and natural role of free malonate in brain are not known but deacylation of malonyl-CoA by reversal of the malonyl-CoA synthetase reaction is postulated. Rat liver and kidney also contain substantial concentrations of free malonate.  相似文献   
36.
37.
38.
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3’-P and 5’-OH, are processed by mammalian polynucleotide kinase 3’-phosphatase (PNKP), a bifunctional enzyme with 3’-phosphatase and 5’-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14–41 to 55–82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP’s 3’ phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3’-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients’ brain. Finally, long amplicon quantitative PCR analysis of human MJD patients’ brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.  相似文献   
39.
Cladosporium herbarum is an important allergenic fungal species that has been reported to cause allergic diseases in nearly all climatic zones. 5-30% of the allergic population displays IgE antibodies against molds. Sensitization to Cladosporium has often been associated with severe asthma and less frequently with chronic urticaria and atopic eczema. However, no dominant major allergen of this species has been found so far. We present cloning, production, and characterization of NADP-dependent mannitol dehydrogenase of C. herbarum (Cla h 8) and show that this protein is a major allergen that is recognized by IgE antibodies of approximately 57% of all Cladosporium allergic patients. This is the highest percentage of patients reacting with any Cladosporium allergen characterized so far. Cla h 8 was purified to homogeneity by standard chromatographic methods, and both N-terminal and internal amino acid sequences of protein fragments were determined. Enzymatic analysis of the purified natural protein revealed that this allergen represents a NADP-dependent mannitol dehydrogenase that interconverts mannitol and d-fructose. It is a soluble, non-glycosylated cytoplasmic protein. Two-dimensional protein analysis indicated that mannitol dehydrogenase is present as a single isoform. The cDNA encoding Cla h 8 was cloned from a lambda-ZAP library constructed from hyphae and spores. The recombinant non-fusion protein was expressed in Escherichia coli and purified to homogeneity. Its immunological and biochemical identity with the natural protein was shown by enzyme activity tests, CD spectroscopy, IgE immunoblots with sera of patients, and by skin prick testing of Cladosporium allergic patients. This protein therefore is a new major allergen of C. herbarum.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号