首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6143篇
  免费   580篇
  国内免费   1篇
  6724篇
  2022年   55篇
  2021年   102篇
  2020年   59篇
  2019年   80篇
  2018年   64篇
  2017年   75篇
  2016年   120篇
  2015年   223篇
  2014年   234篇
  2013年   280篇
  2012年   378篇
  2011年   347篇
  2010年   251篇
  2009年   197篇
  2008年   270篇
  2007年   305篇
  2006年   284篇
  2005年   242篇
  2004年   244篇
  2003年   242篇
  2002年   206篇
  2001年   121篇
  2000年   108篇
  1999年   115篇
  1998年   96篇
  1997年   56篇
  1996年   69篇
  1995年   52篇
  1994年   56篇
  1993年   61篇
  1992年   72篇
  1991年   85篇
  1990年   80篇
  1989年   46篇
  1988年   78篇
  1987年   49篇
  1986年   47篇
  1985年   74篇
  1984年   58篇
  1983年   47篇
  1982年   55篇
  1981年   48篇
  1980年   45篇
  1979年   43篇
  1977年   46篇
  1976年   43篇
  1975年   37篇
  1974年   48篇
  1972年   41篇
  1968年   37篇
排序方式: 共有6724条查询结果,搜索用时 15 毫秒
81.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   
82.
Biotechnology applications of horseradish peroxidase (HRP) would benefit from access to tailor-made variants with greater specific activity, lower K(m) for peroxide, and higher thermostability. Starting with a mutant that is functionally expressed in Saccharomyces cerevisiae, we used random mutagenesis, recombination, and screening to identify HRP-C mutants that are more active and stable to incubation in hydrogen peroxide at 50 degrees C. A single mutation (N175S) in the HRP active site was found to improve thermal stability. Introducing this mutation into an HRP variant evolved for higher activity yielded HRP 13A7-N175S, whose half-life at 60 degrees C and pH 7.0 is three times that of wild-type (recombinant) HRP and a commercially available HRP preparation from Sigma (St. Louis, MO). The variant is also more stable in the presence of H(2)O(2), SDS, salts (NaCl and urea), and at different pH values. Furthermore, this variant is more active towards a variety of small organic substrates frequently used in diagnostic applications. Site-directed mutagenesis to replace each of the four methionine residues in HRP (M83, M181, M281, M284) with isoleucine revealed no mutation that significantly increased the enzyme's stability to hydrogen peroxide.  相似文献   
83.
Oxidatively-induced clustered DNA lesions are considered the signature of any ionizing radiation like the ones human beings are exposed daily from various environmental sources (medical X-rays, radon, etc.). To evaluate the role of BRCA1 deficiencies in the mitigation of radiation-induced toxicity and chromosomal instability we have used two human breast cancer cell lines, the BRCA1 deficient HCC1937 cells and as a control the BRCA1 wild-type MCF-7 cells. As an additional control for the DNA damage repair measurements, the HCC1937 cells with partially reconstituted BRCA1 expression were used. Since clustered DNA damage is considered the signature of ionizing radiation, we have measured the repair of double strand breaks (DSBs), non-DSB bistranded oxidative clustered DNA lesions (OCDLs) as well as single strand breaks (SSBs) in cells exposed to radiotherapy-relevant γ-ray doses. Parallel measurements were performed in the accumulation of chromatid and isochromatid breaks. For the measurement of OCDL repair, we have used a novel adaptation of the denaturing single cell gel electrophoresis (Comet assay) and pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. Independent monitoring of the γ-H2AX foci was also performed while metaphase chromatid lesions were measured as an indicator of chromosomal instability. HCC1937 cells showed a significant accumulation of all types of DNA damage and chromatid breaks compared to MCF-7 while BRCA1 partial expression contributed significantly in the overall repair of OCDLs. These results further support the biological significance of repair resistant clustered DNA damage leading to chromosomal instability. The current results combined with previous findings on the minimized ability of base clusters to induce cell death (mainly induced by DSBs), enhance the potential association of OCDLs with breast cancer development especially in the case of a BRCA1 deficiency leading to the survival of breast cells carrying a high load of unrepaired DNA damage clusters.  相似文献   
84.
In nature similar protein folds accommodate distant sequences and support diverse functions. This observation coupled with the recognition that proteins can tolerate many homologous substitutions inspires protein engineers to use recombination to search for new functions within sequences encoding structurally related molecules. These searches have led to proteins with novel activities, diversified specificities and greater stabilities. Computational methods that exploit structural and evolutionary information are being used to design highly mutated yet still natively folded chimeric proteins and protein libraries.  相似文献   
85.
The life-long homeostasis of memory CD8(+) T cells as well as persistent viral infections have been shown to facilitate the accumulation of highly differentiated CD8(+) CD28(-) T cells, a phenomenon that has been associated with an impaired immune function in humans. However, the molecular mechanisms regulating homeostasis of CD8(+) CD28(-) T cells have not yet been elucidated. In this study, we demonstrate that the miR-23~24~27 cluster is up-regulated during post-thymic CD8(+) T-cell differentiation in humans. The increased expression of miR-24 in CD8(+) CD28(-) T cells is associated with decreased expression of the histone variant H2AX, a protein that plays a key role in the DNA damage response (DDR). Following treatment with the classic chemotherapeutic agent etoposide, a topoisomerase II inhibitor, apoptosis was increased in CD8(+) CD28(-) when compared to CD8(+) CD28(+) T cells and correlated with an impaired DDR in this cell type. The reduced capacity of CD8(+) CD28(-) T cell to repair DNA was characterized by the automated fluorimetric analysis of DNA unwinding (FADU) assay as well as by decreased phosphorylation of H2AX at Ser139, of ATM at Ser1981, and of p53 at Ser15. Interleukin (IL)-15 could prevent etoposide-mediated apoptosis of CD8(+) CD28(-) T cells, suggesting a role for IL-15 in the survival and the age-dependent accumulation of CD8(+) CD28(-) T cells in humans.  相似文献   
86.
Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N‐terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d ‐glucose and 4% d ‐xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d ‐xylose over d ‐glucose with high d ‐xylose transport rates. This mutant supported efficient sugar fermentation of both d ‐glucose and d ‐xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937–1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   
87.
88.
We have designed and synthesized a series of novel antisense methylphosphonate oligonucleotide (MPO) cleaving agents that promote site-specific cleavage on a complementary RNA target. These MPOs contain a non- nucleotide-based linking moiety near the middle of the sequence in place of one of the nucleotide bases. The region surrounding the unpaired base on the RNA strand (i.e. the one directly opposite the non-nucleotide-linker) is sensitive to hydrolytic cleavage catalyzed by ethylenediamine hydrochloride. Furthermore, the regions of the RNA comprising hydrogen bonded domains are resistant to cleavage compared with single-stranded RNA alone. Several catalytic moieties capable of supporting acid/base hydrolysis were coupled to the non-nucleotide-based linker via simple aqueous coupling chemistries. When tethered to the MPO in this manner these moieties are shown to catalyze site-specific cleavage on the RNA target without any additional catalyst.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号