首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   81篇
  国内免费   1篇
  1315篇
  2023年   11篇
  2022年   21篇
  2021年   33篇
  2020年   26篇
  2019年   22篇
  2018年   33篇
  2017年   26篇
  2016年   40篇
  2015年   46篇
  2014年   74篇
  2013年   85篇
  2012年   86篇
  2011年   97篇
  2010年   64篇
  2009年   44篇
  2008年   50篇
  2007年   49篇
  2006年   44篇
  2005年   47篇
  2004年   30篇
  2003年   28篇
  2002年   26篇
  2001年   29篇
  2000年   22篇
  1999年   22篇
  1998年   9篇
  1996年   9篇
  1994年   8篇
  1992年   15篇
  1991年   9篇
  1990年   10篇
  1989年   10篇
  1988年   12篇
  1987年   7篇
  1986年   12篇
  1985年   6篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   8篇
  1979年   13篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   5篇
  1973年   10篇
  1972年   6篇
  1969年   5篇
排序方式: 共有1315条查询结果,搜索用时 15 毫秒
11.
Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)—the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.  相似文献   
12.
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40–70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50–70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.  相似文献   
13.
14.
A solvent system that extracts a maximum number of metabolites belonging to diverse chemical classes from complex biofluids, such as plasma, may offer useful inputs to understand the metabolic and physiological state of an individual. The present study compared seven solvent systems for extraction of metabolites from plasma. The extracts were analyzed by mass spectrometry (MS) and MS/MS (MS2) using a quadrupole time-of-flight liquid chromatography/MS system in positive and negative modes of ionization. Metabolites with molecular mass below 400 were identified using Human Metabolome Database MS2 and MS search interfaces. The acetone/isopropanol (2:1) system yielded promising results in positive ionization mode, as the maximum number of MS and MS2 features was detected in the extract. It was found to be superior in extraction of various classes of metabolites, especially organic acids, nucleosides and nucleoside derivatives, and heterocyclic molecules. Glycerophosphocholines in the mass range of 400–700 were found to be efficiently extracted by the methanol/chloroform/water (8:1:1) system. In negative mode as well, the maximum number of MS2 features was detected in methanol/chloroform/water and acetone/isopropanol extracts. The fingerprints of molecular features obtained in the negative and positive modes differed from each other to a significant extent.  相似文献   
15.
16.
Assam hill goat (Capra hircus) is a prolific local goat in India. bone morphogenetic protein receptor (BMPR1B) gene was studied as a candidate gene for the prolificacy of goats. The objective of the present study was to detect the incidence of mutation in the exonic region of BMPR1B gene of Assam hill goat. Total 90 blood samples were collected randomly from different parts of Assam and genomic DNA were extracted using phenol–chloroform method. The quantity and quality of extracted DNA was examined by spectrophotometry and gel electrophoresis, respectively. PCR amplicon showed a product of 140 bp fragment of BMPR1B gene. The purified product upon digestion with AvaII showed monomorphic banding pattern and revealed wild type alleles with AA genotype. Nucleotide sequencing showed one new mutation 773 (G→C) which is found to be unique in Assam hill goat. Construction of tree at nucleotide level generates from the present experiment lies in common cluster which differs from the other breeds of goat. The analysis of polymorphism for BMPR1B in Assam hill goat indicates that the genetic factor responsible for prolificacy or multiple kidding rates is not related to the reported mutated alleles of BMPR1B gene. Therefore, attempts to be made to detect other SNPs for BMPR1B gene or otherwise effort should be made towards other fecundity gene which might be responsible for the prolificacy of Assam hill goat.  相似文献   
17.
Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence, and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172‐SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N‐terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS‐Rosetta modeling confirm that the highly conserved N‐terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 525–535, 2014.  相似文献   
18.
This article reports simple, green and efficient synthesis of γ-Fe2O3 nanoparticles (NPs) (maghemite) through single-source precursor approach for colorimetric estimation of human glucose level. The γ-Fe2O3 NPs, having cubic morphology with an average particle size of 30 nm, exhibited effective peroxidase-like activity through the catalytic oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 producing a blue-colored solution. On the basis of this colored-reaction, we have developed a simple, cheap, highly sensitive and selective colorimetric method for estimation of glucose using γ-Fe2O3/TMB/glucose–glucose oxidase (GOx) system in the linear range from 1 to 80 μM with detection limit of 0.21 μM. The proposed glucose sensor displays faster response, good stability, reproducibility and anti-interference ability. Based on this simple reaction process, human blood and urine glucose level can be monitored conveniently.  相似文献   
19.
Circumsporozoite protein (CSP) of Plasmodium falciparum is a promising malaria vaccine target. RTS,S, the most advanced malaria vaccine candidate consists of the central NANP repeat and carboxy-terminal region of CSP displayed on a hepatitis B virus-like particle (VLP). To build upon the success of RTS,S, we produced a near full-length Plasmodium falciparum CSP that also includes the conserved amino-terminal region of CSP. We recently showed that this soluble CSP, combined with a synthetic Toll-like-receptor-4 (TLR4) agonist in stable oil-in-water emulsion (GLA/SE), induces a potent and protective immune response in mice against transgenic parasite challenge. Here we have investigated whether the immunogenicity of soluble CSP could be further augmented by presentation on a VLP. Bacteriophage Qβ VLPs can be readily produced in E.coli, they have a diameter of 25 nm and contain packaged E. coli RNA which serves as a built in adjuvant through the activation of TLR7/8. CSP was chemically conjugated to Qβ and the CSP-Qβ vaccine immunogenicity and efficacy were compared to adjuvanted soluble CSP in the C57Bl/6 mouse model. When formulated with adjuvants lacking a TLR4 agonist (Alum, SE and Montanide) the Qβ-CSP induced higher anti-NANP repeat titers, higher levels of cytophilic IgG2b/c antibodies and a trend towards higher protection against transgenic parasite challenge as compared to soluble CSP formulated in the same adjuvant. The VLP and soluble CSP immunogenicity difference was most pronounced at low antigen dose, and within the CSP molecule, the titers against the NANP repeats were preferentially enhanced by Qβ presentation. While a TLR4 agonist enhanced the immunogenicity of soluble CSP to levels comparable to the VLP vaccine, the TLR4 agonist did not further improve the immunogenicity of the Qβ-CSP vaccine. The data presented here pave the way for further improvement in the Qβ conjugation chemistry and evaluation of both the Qβ-CSP and soluble CSP vaccines in the non-human primate model.  相似文献   
20.
ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号