首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   71篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   16篇
  2015年   27篇
  2014年   20篇
  2013年   53篇
  2012年   41篇
  2011年   46篇
  2010年   24篇
  2009年   24篇
  2008年   26篇
  2007年   28篇
  2006年   38篇
  2005年   30篇
  2004年   32篇
  2003年   30篇
  2002年   26篇
  2001年   16篇
  2000年   12篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   11篇
  1995年   11篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   9篇
  1990年   11篇
  1989年   6篇
  1987年   4篇
  1985年   6篇
  1984年   5篇
  1982年   6篇
  1981年   7篇
  1979年   6篇
  1977年   2篇
  1976年   5篇
  1973年   2篇
  1969年   2篇
  1968年   3篇
  1966年   3篇
  1961年   3篇
  1957年   2篇
  1955年   2篇
  1935年   2篇
排序方式: 共有691条查询结果,搜索用时 15 毫秒
51.
A.F. Alpi  K.J. Patel 《DNA Repair》2009,8(4):430-435
The hereditary genetic disorder Fanconi anemia (FA) belongs to the heterogeneous group of diseases associated with defective DNA damage repair. Recently, several reviews have discussed the FA pathway and its molecular players in the context of genome maintenance and tumor suppression mechanisms [H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446–457; W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735–748; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191–1198; K.J. Patel, Fanconi anemia and breast cancer susceptibility, Nat. Genet. 39 (2007) 142–143]. This review assesses the influence of post-translational modification by ubiquitin. We review and extract the key features of the enzymatic cascade required for the monoubiquitylation of the FANCD2/FANCI complex and attempt to include recent findings into a coherent mechanism. As this part of the FA pathway is still far from fully understood, we raise several points that must be addressed in future studies.  相似文献   
52.
53.
Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C-null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8(+) cytotoxic T lymphocyte (CTL) raised in cathepsin C-null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C-null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency.  相似文献   
54.
Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-alpha abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.  相似文献   
55.
56.
The establishment of oxidants as mediators of signal transduction has renewed the interest of investigators in oxidant production and metabolism. In particular, H(2)O(2) has been demonstrated to play pivotal roles in mediating cell differentiation, proliferation, and death. Intracellular concentrations of H(2)O(2) are modulated by its rate of production and its rate of decomposition by catalase and peroxidases. In inflammation and infection, some of the H(2)O(2) is converted to hypochlorous acid, a key mediator of the host immune response against pathogens. In vivo HOCl production is mediated by myeloperoxidase, which uses excess H(2)O(2) to oxidize Cl(-). Mashino and Fridovich (Biochim. Biophys. Acta 956:63-69; 1988) observed that a high excess of HOCl over catalase inactivated the enzyme by mechanisms that remain unclear. The potential relevance of this as an alternative mechanism for catalase activity control and its potential impact on H(2)O(2)-mediated signaling and HOCl production compelled us to explore in depth the HOCl-mediated catalase inactivation pathways. Here, we demonstrate that HOCl induces formation of catalase protein radicals and carbonyls, which are temporally correlated with catalase aggregation. Hypochlorite-induced catalase aggregation and free radical formation that paralleled the enzyme loss of function in vitro were also detected in mouse hepatocytes treated with the oxidant. Interestingly, the novel immuno-spin-trapping technique was applied to image radical production in the cells. Indeed, in HOCl-treated hepatocytes, catalase and protein-DMPO nitrone adducts were colocalized in the cells' peroxisomes. In contrast, when hepatocytes from catalase-knockout mice were treated with hypochlorous acid, there was extensive production of free radicals in the plasma membrane. Because free radicals are short-lived species with fundamental roles in biology, the possibility of their detection and localization to cell compartments is expected to open new and stimulating research venues in the interface of chemistry, biology, and medicine.  相似文献   
57.
58.
The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml−1 could be achieved even with a nonoptimized cultivation procedure.  相似文献   
59.
Interactions between native diversity and invasive species can be more complex than is currently understood. Invasive ant species often substantially reduce diversity in the native ants diversity that act as natural control agents for pest insects. In Indonesia (on the island of Sulawesi), the third largest cacao producer worldwide, we show that a predatory endemic toad (Ingerophrynus celebensis) controls invasive ant (Anoplolepis gracilipes) abundance, and positively affects native ant diversity. We call this the invasive-naivety effect (an opposite of enemy release), whereby alien species may not harbour anti-predatory defences against a novel native predator. A positive effect of the toads on native ants may facilitate their predation on insect vectors of cacao diseases. Hence, toads may increase crop yield, but further research is needed on this aspect. Ironically, amphibians are globally the most threatened vertebrate class and are strongly impacted by the conversion of rainforest to cacao plantations in Sulawesi. It is, therefore, crucial to manage cacao plantations to maintain these endemic toads, as they may provide critical ecosystem services, such as invasion resistance and preservation of native insect diversity.  相似文献   
60.
The aim of the present study was to identify the sites of accumulation of Cr in the species of macrophytes that are abundant in the Cachoeira river, namely, Alternanthera philoxeroides, Borreria scabiosoides, Polygonum ferrugineum and Eichhornia crassipes. Plants were grown in nutritive solution supplemented with 0.25 and 50 mg l?1 of CrCl3·6H2O. Samples of plant tissues were digested with HNO3/HCl in a closed-vessel microwave system and the concentrations of Cr determined using inductively-coupled plasma mass spectrometry (ICP-MS). The ultrastructure of root, stem and leaf tissue was examined using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) in order to determine the sites of accumulation of Cr and to detect possible alterations in cell organelles induced by the presence of the metal. Chromium accumulated principally in the roots of the four macrophytes (8.6?C30 mg kg?1 dw), with much lower concentrations present in the stems and leaves (3.8?C8.6 and 0.01?C9.0 mg kg?1 dw, respectively). Within root tissue, Cr was present mainly in the vacuoles of parenchyma cells and cell walls of xylem and parenchyma. Alterations in the shape of the chloroplasts and nuclei were detected in A. philoxeroides and B. scabiosoides, suggesting a possible application of these aquatic plants as biomarkers from Cr contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号