首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2130篇
  免费   168篇
  国内免费   1篇
  2023年   8篇
  2022年   16篇
  2021年   42篇
  2020年   30篇
  2019年   32篇
  2018年   42篇
  2017年   41篇
  2016年   59篇
  2015年   101篇
  2014年   97篇
  2013年   121篇
  2012年   184篇
  2011年   146篇
  2010年   99篇
  2009年   89篇
  2008年   121篇
  2007年   133篇
  2006年   86篇
  2005年   102篇
  2004年   91篇
  2003年   80篇
  2002年   100篇
  2001年   20篇
  2000年   17篇
  1999年   20篇
  1998年   22篇
  1997年   22篇
  1996年   19篇
  1995年   21篇
  1994年   21篇
  1993年   18篇
  1992年   15篇
  1991年   14篇
  1990年   12篇
  1989年   19篇
  1988年   14篇
  1987年   7篇
  1986年   10篇
  1985年   16篇
  1984年   12篇
  1982年   14篇
  1981年   13篇
  1979年   14篇
  1978年   14篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1974年   12篇
  1973年   11篇
  1968年   8篇
排序方式: 共有2299条查询结果,搜索用时 171 毫秒
171.
172.
DNA repair may prevent increased levels of oxidatively damaged DNA from prolonged oxidative stress induced by, e.g. exposure to diesel exhaust particles (DEP). We studied oxidative damage to DNA in broncho-alveolar lavage cells, lungs, and liver after 4 × 1.5 h inhalations of DEP (20 mg/m3) in Ogg1- / -  and wild type (WT) mice with similar extent of inflammation. DEP exposure increased lung levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in Ogg1- / -  mice, whereas no effect on 8-oxodG or oxidized purines in terms of formamidopyrimidine DNA glycosylase (FPG) sites was observed in WT mice. In both unexposed and exposed Ogg1- / -  mice the level of FPG sites in the lungs was 3-fold higher than in WT mice. The high basal level of FPG sites in Ogg1- / -  mice probably saturated the assay and prevented detection of DEP-generated damage. In conclusion, Ogg1- / -  mice have elevated pulmonary levels of FPG sites and accumulate genomic 8-oxodG after repeated inhalations of DEP.  相似文献   
173.
The high retention of duplicate genes in the genome of Paramecium tetraurelia has led to the hypothesis that most of the retained genes have persisted because of constraints due to gene dosage. This and other possible mechanisms are discussed in the light of expectations from population genetics and systems biology.  相似文献   
174.
175.
Mutations in the polytopic lysosomal membrane glycoprotein CLN3 result in a severe neurodegenerative disorder. Previous studies identified two cytosolic signal structures contributing to lysosomal targeting. We now examined the role of glycosylation and the C-terminal CAAX motif in lysosomal transport of CLN3 in non-neuronal and neuronal cells. Mutational analysis revealed that in COS7 cells, CLN3 is glycosylated at asparagine residues 71 and 85. Both partially and non-glycosylated CLN3 were transported correctly to lysosomes. Mevalonate incorporation and farnesyltransferase inhibitor studies indicate that CLN3 is prenylated most likely at cysteine 435. Substitution of cysteine 435 reduced the steady-state level of CLN3 in lysosomes most likely because of impaired sorting in early endosomal structures, particularly in neuronal cells. Additionally, the cell surface expression of CLN3 was increased in the presence of farnesyltransferase inhibitors. Alteration of the spacing between the transmembrane domain and the CAAX motif or the substitution of the entire C-terminal domain of CLN3 with cytoplasmic tails of mannose 6-phosphate receptors have demonstrated the importance of the C-terminal domain of proper length and composition for exit of the endoplasmic reticulum. The data suggest that co-operative signal structures in different cytoplasmic domains of CLN3 are required for efficient sorting and for transport to the lysosome.  相似文献   
176.

Biological pest control is becoming increasingly important for sustainable agriculture. Although many species of natural enemies are already being used commercially, efficient biological control of various pests is still lacking, and there is a need for more biocontrol agents. In this review, we focus on predatory soil mites, their role as natural enemies, and their biocontrol potential, mainly in vegetable and ornamental crops, with an emphasis on greenhouse systems. These predators are still underrepresented in biological control, but have several advantages compared to predators living on above-ground plant parts. For example, predatory soil mites are often easy and affordable to mass rear, as most of them are generalist predators, which also means that they may be used against various pests and can survive periods of pest scarcity by feeding on alternative prey or food. Many of them can also endure unfavourable conditions, making it easier for them to establish in various crops. Based on the current literature, we show that they have potential to control a variety of pests, both in greenhouses and in the field. However, more research is needed to fully understand and appreciate their potential as biocontrol agents. We review and discuss several methods to increase their efficiency, such as supplying them with alternative food and changing soil/litter structure to enable persistence of their populations. We conclude that predatory soil mites deserve more attention in future studies to increase their application in agricultural crops.

  相似文献   
177.
Submicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample.  相似文献   
178.
179.
180.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号