首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8708篇
  免费   817篇
  2021年   96篇
  2020年   71篇
  2019年   74篇
  2018年   91篇
  2017年   90篇
  2016年   145篇
  2015年   274篇
  2014年   274篇
  2013年   342篇
  2012年   487篇
  2011年   427篇
  2010年   273篇
  2009年   248篇
  2008年   358篇
  2007年   382篇
  2006年   328篇
  2005年   315篇
  2004年   291篇
  2003年   309篇
  2002年   284篇
  2001年   245篇
  2000年   222篇
  1999年   227篇
  1998年   96篇
  1997年   80篇
  1996年   98篇
  1995年   96篇
  1994年   76篇
  1993年   84篇
  1992年   164篇
  1991年   165篇
  1990年   134篇
  1989年   138篇
  1988年   144篇
  1987年   109篇
  1986年   98篇
  1985年   108篇
  1984年   101篇
  1983年   85篇
  1982年   63篇
  1981年   59篇
  1979年   83篇
  1978年   71篇
  1977年   72篇
  1976年   60篇
  1975年   51篇
  1974年   91篇
  1973年   57篇
  1972年   62篇
  1970年   64篇
排序方式: 共有9525条查询结果,搜索用时 15 毫秒
961.
Recent knockout experiments in the mouse generated amazing craniofacial skeletal muscle phenotypes. Yet none of the genes could be placed into a molecular network, because the programme to control the development of muscles in the head is not known. Here we show that antagonistic signals from the neural tube and the branchial arches specify extraocular versus branchiomeric muscles. Moreover, we identified Fgf8 as the branchial arch derived signal. However, this molecule has an additional function in supporting the proliferative state of myoblasts, suppressing their differentiation, while a further branchial arch derived signal, namely Bmp7, is an overall negative regulator of head myogenesis.  相似文献   
962.
The developing mammalian brain experiences a period of rapid growth during which various otherwise innocuous environmental factors cause widespread apoptotic neuronal death. To gain insight into developmental events influenced by a premature exposure to high oxygen levels and identify proteins engaged in neurodegenerative and reparative processes, we analyzed mouse brain proteome changes at P7, P14 and P35 caused by an exposure to hyperoxia at P6. Changes detected in the brain proteome suggested that hyperoxia leads to oxidative stress and apoptotic neuronal death. These changes were consistent with results of histological and biochemical evaluation of the brains, which revealed widespread apoptotic neuronal death and increased levels of protein carbonyls. Furthermore, we detected changes in proteins involved in synaptic function, cell proliferation and formation of neuronal connections, suggesting interference of oxidative stress with these developmental events. These effects are age-dependent, as they did not occur in mice subjected to hyperoxia in adolescence.  相似文献   
963.
Singlet oxygen ((1)O(2)), an electronically excited form of molecular oxygen, is a mediator of biological effects of ultraviolet A radiation, stimulating signaling cascades in human cells. We demonstrate here that (1)O(2) generated by photosensitization or by thermodecomposition of 3,3'-(1,4-naphthylidene)dipropionate-1,4-endoperoxide inactivates isolated protein tyrosine phosphatases (PTPases). PTPase activities of PTP1B or CD45 were abolished by low concentrations of (1)O(2), but were largely restored by post-treatment with dithiothreitol. Electrospray ionization mass spectrometry analysis of tryptic digests of PTP1B exposed to (1)O(2) revealed oxidation of active-site Cys215 as the only cysteine residue oxidized. In summary, (1)O(2) may activate signaling cascades by interfering with phosphotyrosine dephosphorylation.  相似文献   
964.
Small supernumerary marker chromosomes (sSMC) are still a major problem in clinical cytogenetics as they are too small to be characterized for their chromosomal origin by traditional banding techniques, but require molecular cytogenetic techniques for their identification. Apart from the correlation of about one third of the sSMC cases with a specific clinical picture, i.e. the i(18p), der(22), i(12p) (Pallister Killian syndrome) and inv dup(22) (cat-eye) syndromes, most of the remaining sSMC have not yet been correlated with clinical syndromes. Recently, we reviewed the available >1600 sSMC cases (Liehr T, sSMC homepage: http://mti-n.mti.uni-jena.de/~huwww/MOL_ZYTO/sSMC.htm). A total of 387 cases (including the 45 new cases reported here) have been molecularly cytogenetically characterized with regard to their chromosomal origin, the presence of euchromatin, heterochromatin and satellite material. Based on analysis of these cases we present the first draft of a basic genotype-phenotype correlation for sSMC for all human chromosomes apart from the chromosomes Y, 10, 11 and 13.  相似文献   
965.
Current knowledge about processes that generate long-distance dispersal of plants is still limited despite its importance for persistence of populations and colonization of new potential habitats. Today wild large mammals are presumed to be important vectors for long-distance transport of diaspores within and between European temperate forest patches, and in particular wild boars recently came into focus. Here we use a specific habit of wild boar, i.e. wallowing in mud and subsequent rubbing against trees, to evaluate epizoochorous dispersal of vascular plant diaspores. We present soil seed bank data from 27 rubbing trees versus 27 control trees from seven forest areas in Germany. The mean number of viable seeds and the plant species number were higher in soil samples near rubbing trees compared with control trees. Ten of the 20 most frequent species were more frequent, and many species exclusively appeared in the soil samples near rubbing trees. The large number of plant species and seeds – more than 1000 per tree – in the soils near rubbing trees is difficult to explain unless the majority were dispersed by wild boar. Hooked and bristly diaspores, i.e. those adapted to epizoochory, were more frequent; however, many species with unspecialized diaspores occurred exclusively near rubbing trees. As opposed to plant species closely tied to forests species which occur both in forest and open vegetation and non-forest species were more frequent near rubbing trees compared with controls. These findings are consistent with previous studies on diaspore loads in the coats and hooves of shot wild boars. However, our method allows to identify the transport of diaspores from the open landscape into forest stands, where they might especially emerge after disturbance, and a clustered distribution of epizoochorically dispersed seeds. Moreover, accumulation of seeds of wetness indicators near rubbing trees demonstrates directed dispersal of plant species inhabiting wet places among remote wallows.  相似文献   
966.
This paper attempts to review in how far thermodynamic analysis can be used to understand and predict the performance of microorganisms with respect to growth and bio-product synthesis. In the first part, a simple thermodynamic model of microbial growth is developed which explains the relationship between the driving force for growth in terms of Gibbs energy dissipation and biomass yield. From the currently available literature, it appears that the Gibbs energy dissipation per C-mol of biomass grown, which represents the driving force for chemotrophic growth, may have been adapted by evolutionary processes to strike a reasonable compromise between metabolic rate and growth efficiency. Based on empirical correlations of the C-molar Gibbs energy dissipation, the wide variety of biomass yields observed in nature can be explained and roughly predicted. This type of analysis may be highly useful in environmental applications, where such wide variations occur. It is however not able to predict biomass yields in very complex systems such as mammalian cells nor is it able to predict or to assess bio-product or recombinant protein yields. For this purpose, a much more sophisticated treatment that accounts for individual metabolic pathways separately is required. Based on glycolysis as a test example, it is shown in the last part that simple thermodynamic analysis leads to erroneous conclusions even in well-known, simple cases. Potential sources for errors have been analyzed and can be used to identify the most important needs for future research.  相似文献   
967.
Cyanobacterial secondary metabolites have attracted increasing scientific interest due to bioactivity of many compounds in various test systems. Among the known structures, oligopeptides are often found with many congeners sharing conserved substructures, while being highly variable in others. A major part of known oligopeptides are of non-ribosomal origin and can be grouped into classes with conserved structural properties. Thus, the overall structural diversity of cyanobacterial oligopeptides only seemingly suggests an equally high diversity of biosynthetic pathways and respective genes. For each class of peptides, some of which have been found in all major branches of the cyanobacterial evolutionary tree, homologous synthetases and genes can be inferred. This implies that non-ribosomal peptide synthetase genes are a very ancient part of the cyanobacterial genome and presumably have evolved by recombination and duplication events to reach the present structural diversity of cyanobacterial oligopeptides. In addition, peptide synthetases would appear to be an essential part of the cyanobacterial evolution and physiology. The present review presents an overview of the biosynthesis of cyanobacterial peptides and corresponding gene clusters, the structural diversity of structural types and structural variations within peptide classes, and implications for the evolution and plasticity of biosynthetic genes and the potential function of cyanobacterial peptides.  相似文献   
968.
969.
970.
ATP-dependent oligomeric proteases are major components of cellular protein quality control systems. To investigate the role of proteolytic processes in the maintenance of mitochondrial functions, we analyzed the dynamic behavior of the mitochondrial proteome of Saccharomyces cerevisiae by two-dimensional (2D) polyacrylamide gel electrophoresis. By a characterization of the influence of temperature on protein turnover in isolated mitochondria, we were able to define four groups of proteins showing a differential susceptibility to proteolysis. The protein Pim1/LON has been shown to be the main protease in the mitochondrial matrix responsible for the removal of damaged or nonnative proteins. To assess the substrate range of Pim1 under in vivo conditions, we performed a quantitative comparison of the 2D protein spot patterns between wild-type and pim1Delta mitochondria. We were able to identify a novel subset of mitochondrial proteins that are putative endogenous substrates of Pim1. Using an in organello degradation assay, we confirmed the Pim1-specific, ATP-dependent proteolysis of the newly identified substrate proteins. We could demonstrate that the functional integrity of the Pim1 substrate proteins, in particular, the presence of intact prosthetic groups, had a major influence on the susceptibility to proteolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号