首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   77篇
  800篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   8篇
  2019年   9篇
  2018年   14篇
  2017年   8篇
  2016年   11篇
  2015年   22篇
  2014年   32篇
  2013年   42篇
  2012年   55篇
  2011年   57篇
  2010年   39篇
  2009年   27篇
  2008年   40篇
  2007年   43篇
  2006年   36篇
  2005年   46篇
  2004年   30篇
  2003年   26篇
  2002年   34篇
  2001年   10篇
  2000年   19篇
  1999年   16篇
  1998年   5篇
  1996年   12篇
  1995年   11篇
  1994年   3篇
  1993年   6篇
  1992年   7篇
  1991年   8篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1978年   4篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1974年   4篇
  1973年   6篇
  1972年   4篇
  1970年   3篇
  1960年   3篇
  1925年   5篇
排序方式: 共有800条查询结果,搜索用时 15 毫秒
21.
Alanyl aminopeptidase (APN) is a surface-bound metallopeptidase that processes the N-terminals of biologically active peptides such as enkephalins, angiotensins, neurokinins, and cytokines. It exerts profound activity on vital processes such as immune response, cellular growth, and blood pressure control. Inhibition of either APN gene expression or its enzymatic activity severely affects leukocyte growth and function. We show here that oxidoreductase-mediated modulations of the cell surface thiol status affect the enzymatic activity of APN. Additional evidence for the pivotal role of extracellular cysteines in the APN molecule was obtained when substitution of any of these six cysteines caused complete loss of surface expression and enzymatic activity. In contrast, the transmembrane Cys24 appears to have no similar function. Enzymatically inactive cysteine mutants were retained in the endoplasmic reticulum as shown by high-resolution imaging and Endoglycosidase H digestion. In the absence of any crystal-structure data, the demonstration that individual extracellular cysteines contribute to APN expression and function appears to be of particular importance. The data are the first to show thiol-dependent modulation of the activity of a typical surface-bound peptidase at the cell surface, probably reflecting a general regulating mechanism. This may relate to various disease processes such as inflammation or malignant transformation.  相似文献   
22.
Two families with autosomal dominantly inherited desmoid tumors have recently been shown to have germline mutations at the 3' end of the APC gene. We subsequently identified an Amish family with autosomal dominantly inherited desmoid tumors. Genetic analysis performed on one family member, a 47-year-old man with multiple desmoid tumors and no colon polyps, revealed a protein truncating mutation in the middle of the APC gene. The truncating mutation is the result of a 337-bp insertion of an Alu I sequence into codon 1526 of the APC gene. The presence of a poly(A) tail at the 3' end of the insertion suggests that the Alu I sequence was inserted by a retrotranspositional event. Germline insertions of Alu I sequences have occasionally been reported to cause other genetic diseases including type I neurofibromatosis, hereditary site-specific breast cancer (BRCA2), and hemophilia B. However, this is the first report of a germline mutation of the APC gene resulting from an Alu I insertion.  相似文献   
23.
24.
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.  相似文献   
25.
26.
Arndt MA  Krauss J  Rybak SM 《FEBS letters》2004,578(3):257-261
By varying linker length and domain orientation three multivalent derivatives of a monovalent anti-CD22 single-chain fragment variable (scFv) antibody were generated. Shortening the linker of the V(H)-V(L) oriented scFv to 5 or 0 residues resulted in the formation of diabodies or a mixture of tetramers and trimers, respectively. Unexpectedly, a V(L)-0-V(H) scFv assembled to homogenous dimers, remained substantially more stable than the V(H)-5-V(L) diabody when incubated in human serum at 37 degrees C, and retained its dimeric state when concentrated up to 4 mg/ml. These properties suggest the V(L)-0-V(H) scFv could become an attractive vehicle for the selective delivery of multiple effector molecules to CD22(+) tumor cells.  相似文献   
27.
Lipid rafts are cholesterol-rich membrane microdomains that are thought to act as coordinated signaling platforms by regulating dynamic, agonist-induced translocation of signaling proteins. They have been described to play a role in multiple prototypical cascades, among them the lipopolysaccharide pathway, and to host multiple signaling proteins, including kinases and low molecular weight G-proteins. Here we report lipopolysaccharide-induced activation of the Rho family GTPase Cdc42, and we show its activation in the human neutrophil to be mediated by a p38 mitogen-activated protein kinase-dependent mechanism. Subcellular fractionation reveals that lipopolysaccharide induces translocation of Cdc42 to lipid rafts, where it and p38 are both found to be activated. By contrast, lipopolysaccharide causes translocation of Rac from the polymorphonuclear leukocyte (PMN) rafts and does not induce its activation. With the use of methyl-beta-cyclodextrin, a cholesterol-depleting agent that reversibly disrupts rafts, we confirm an important regulatory role for rafts in the activation state of p38 and Cdc42 and in the Rho GTPase-dependent functions superoxide anion production and actin polymerization. Methyl-beta-cyclodextrin induces activation of p38 and Cdc42, but not Rac, in the nonstimulated PMN, yet inhibits subsequent lipopolysaccharide-induced activation of p38 and Cdc42. In parallel, methyl-beta-cyclodextrin primes the human PMN for subsequent superoxide release triggered by the formylated bacterial tripeptide formyl-Met-Leu-Phe, and induces actin polymerization in a subcellular distribution distinct from that induced by lipopolysaccharide. In sum, these findings provide evidence for an important regulatory role of cholesterol in both transmission of the lipopolysaccharide signal and the inflammatory phenotype of the human neutrophil.  相似文献   
28.
Polymer networks are based on molecules which are covalently or physically connected in a three-dimensional network. In presence of an appropriate solvent these networks swell by solvent absorption to form gels. These gels, which are called hydrogels in case of water absorption, are able to change their volume by more than a hundred-fold. During the swelling or shrinking process the hydrogels perform a mechanical work. Their volume standardized working capacity can be ten-times larger than that of an electromagnet. Due to their simple design, miniaturisation properties, and their ability to realize many automatic sensor and actuator functions, smart hydrogels offer new solutions in biomedical technology.  相似文献   
29.
Long-range correlations in genomic base composition are a ubiquitous statistical feature among many eukaryotic genomes. In this article, these correlations are shown to substantially influence the statistics of sequence alignment scores. Using a Gaussian approximation to model the correlated score landscape, we calculate the corrections to the scale parameter lambda of the extreme value distribution of alignment scores. Our approximate analytic results are supported by a detailed numerical study based on a simple algorithm to efficiently generate long-range correlated random sequences. We find both, mean and exponential tail of the score distribution for long-range correlated sequences to be substantially shifted compared to random sequences with independent nucleotides. The significance of measured alignment scores will therefore change upon incorporation of the correlations in the null model. We discuss the magnitude of this effect in a biological context.  相似文献   
30.
The ADAM (A Disintegrin and Metalloprotease) family of transmembrane proteins plays important roles in embryogenesis and tissue formation based on their multiple functional domains. In the present study, for the first time, the expression patterns of the premature and the active forms of six members of the ADAM proteins — ADAM9, ADAM10, ADAM12, ADAM17, ADAM22 and ADAM23 — in distinct parts of the developing chicken brain were investigated by quantitative Western blot analysis from embryonic incubation day (E) 10 to E20. The results show that the premature and the active forms of various ADAM proteins are spatiotemporally regulated in different parts of the brain during development, suggesting that the ADAMs play a very important role during embryonic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号