首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2111篇
  免费   212篇
  国内免费   2篇
  2023年   16篇
  2022年   23篇
  2021年   51篇
  2020年   43篇
  2019年   34篇
  2018年   46篇
  2017年   42篇
  2016年   71篇
  2015年   132篇
  2014年   122篇
  2013年   153篇
  2012年   179篇
  2011年   170篇
  2010年   120篇
  2009年   93篇
  2008年   140篇
  2007年   150篇
  2006年   111篇
  2005年   82篇
  2004年   93篇
  2003年   80篇
  2002年   63篇
  2001年   37篇
  2000年   18篇
  1999年   15篇
  1998年   16篇
  1997年   10篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   18篇
  1991年   12篇
  1990年   15篇
  1989年   6篇
  1988年   7篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   13篇
  1983年   11篇
  1982年   9篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1971年   8篇
  1969年   4篇
排序方式: 共有2325条查询结果,搜索用时 531 毫秒
101.
Assessing whether trait variations among individuals are consistent over time and among environmental conditions is crucial to understand evolutionary responses to new selective pressures such as climate change. According to the universal thermal dependence hypothesis, thermal sensitivity of metabolic rate should not vary strongly and consistently among organisms, implying limited evolutionary response for metabolic traits under climate change. However, this hypothesis has been rarely tested at an individual level, leaving a gap in our understanding of climate change impacts on metabolic responses and their potential evolution. Using the amphipod Gammarus fossarum, we investigated the variability and repeatability of individual metabolic thermal reaction norms over time. We found large variations in both the thermal sensitivity (i.e. slope) and expression level (i.e. intercept) of individual metabolic reaction norms. Moreover, differences among individuals were consistent over time, and therefore repeatable. Inter‐individual variations in body mass resulted in a high repeatability of metabolic expression level but had no significant effect on the repeatability of thermal sensitivity. Overall, our results highlight that inter‐individual variability and repeatability of thermal reaction norms can be substantial. We conclude that these consistent differences among individuals should not be overlooked when apprehending the ecological and evolutionary effects of climate change.  相似文献   
102.
This study provides the length‐weight relationship (LWR) for 13 demersal fish species belonging to 11 families and 8 orders. Data were collected in the northeast Brazilian continental shelf during two scientific surveys (2015 and 2017) using a bottom trawl net (side length of body mesh: 40 mm, side length of cod‐end mesh: 25 mm) at 35 stations between 15 and 60 m of depth. We provide novel LWRs for four species and expand the size range of 9 relationships previously established.  相似文献   
103.
Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells’ (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.Subject terms: Breast cancer, Cancer stem cells  相似文献   
104.
It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.  相似文献   
105.
Macrophage colony-stimulating factor receptor (M-CSF-R) is a tyrosine kinase that regulates proliferation, differentiation, and cell survival during monocytic lineage development. Upon activation, M-CSF-R dimerizes and autophosphorylates on specific tyrosines, creating binding sites for several cytoplasmic SH2-containing signaling molecules that relay and modulate the M-CSF signal. Here we show that M-CSF-R interacts with suppressor of cytokine signaling 1 (Socs1), a negative regulator of various cytokine and growth factor signaling pathways. Using the yeast two-hybrid system, in vitro glutathione S-transferase-M-CSF-R pull-down, and in vivo coimmunoprecipitation experiments, we demonstrated a direct interaction between the SH2 domain of Socs1 and phosphorylated tyrosines 697 or 721 of the M-CSF-R kinase insert region. Moreover, Socs1 is tyrosine-phosphorylated in response to M-CSF. Ectopic expression of Socs1 in FDC-P1/MAC and EML hematopoietic cell lines decreased their growth rates in the presence of limiting concentrations of M-CSF. However, Socs1 expression did not totally suppress long term cell growth in the presence of saturating M-CSF concentrations, in contrast to other cytokines such as stem cell factor and interleukin 3. Taken together, these results suggest that Socs1 is an M-CSF-R-binding partner involved in negative regulation of proliferation signaling and that it differentially affects cytokine receptor signals.  相似文献   
106.
A shuttle vector designated pMAD was constructed for quickly generating gene inactivation mutants in naturally nontransformable gram-positive bacteria. This vector allows, on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates, a quick colorimetric blue-white discrimination of bacteria which have lost the plasmid, greatly facilitating clone identification during mutagenesis. The plasmid was used in Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus to efficiently construct mutants with or without an associated antibiotic resistance gene.  相似文献   
107.
The synthesis and SAR studies of spiroquinazolinones as novel PDE7 inhibitors are discussed. The best compounds from the series displayed nanomolar inhibitory affinity and were selective versus other PDE isoenzymes.  相似文献   
108.
109.
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.  相似文献   
110.
Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8+ T-cells and the use of an in vitro model of naïve CD8+ T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8+ T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8+ T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8+ and CD4+ T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号