首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2397篇
  免费   239篇
  国内免费   2篇
  2638篇
  2023年   18篇
  2022年   30篇
  2021年   63篇
  2020年   48篇
  2019年   41篇
  2018年   52篇
  2017年   49篇
  2016年   84篇
  2015年   154篇
  2014年   149篇
  2013年   185篇
  2012年   207篇
  2011年   191篇
  2010年   139篇
  2009年   101篇
  2008年   159篇
  2007年   165篇
  2006年   120篇
  2005年   93篇
  2004年   110篇
  2003年   91篇
  2002年   76篇
  2001年   37篇
  2000年   18篇
  1999年   16篇
  1998年   16篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   17篇
  1991年   11篇
  1990年   15篇
  1989年   6篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   13篇
  1983年   10篇
  1982年   9篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1971年   8篇
  1969年   4篇
排序方式: 共有2638条查询结果,搜索用时 14 毫秒
81.
82.
Microbial Interactions within a Cheese Microbial Community   总被引:1,自引:1,他引:1       下载免费PDF全文
The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified.  相似文献   
83.
84.
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.  相似文献   
85.
Ribonuclease R (RNR1) and polynucleotide phosphorylase (cpPNPase) are the two known 3′→5′ exoribonucleases in Arabidopsis chloroplasts, and are involved in several aspects of rRNA and mRNA metabolism. In this work, we show that mutants lacking both RNR1 and cpPNPase exhibit embryo lethality, akin to the non‐viability of the analogous double mutant in Escherichia coli. We were successful, however, in combining an rnr1 null mutation with weak pnp mutant alleles, and show that the resulting chlorotic plants display a global reduction in RNA abundance. Such a counterintuitive outcome following the loss of RNA degradation activity suggests a major importance of RNA maturation as a determinant of RNA stability. Detailed analysis of the double mutant demonstrates that the enzymes catalyze a two‐step maturation of mRNA 3′ ends, with RNR1 polishing 3′ termini created by cpPNPase. The bulky quaternary structure of cpPNPase compared with RNR1 could explain this activity split between the two enzymes. In contrast to the double mutants, the rnr1 single mutant overaccumulates most mRNA species when compared with the wild type. The excess mRNAs in rnr1 are often present in non‐polysomal fractions, and half‐life measurements demonstrate a substantial increase in the stability of most mRNA species tested. Together, our data reveal the cooperative activity of two 3′→5′ exoribonucleases in chloroplast mRNA 3′ end maturation, and support the hypothesis that RNR1 plays a significant role in the destabilization of mRNAs unprotected by ribosomes.  相似文献   
86.

Background

Auditory laterality is suggested to be characterized by a left hemisphere dominance for the processing of conspecific communication. Nevertheless, there are indications that auditory laterality can also be affected by communicative significance, emotional valence and social recognition.

Methodology/Principal Findings

In order to gain insight into the effects of caller characteristics on auditory laterality in the early primate brain, 17 gray mouse lemurs were tested in a head turn paradigm. The head turn paradigm was established to examine potential functional hemispheric asymmetries on the behavioral level. Subjects were presented with playbacks of two conspecific call types (tsak calls and trill calls) from senders differing in familiarity (unfamiliar vs. familiar) and sex (same sex vs. other sex). Based on the head turn direction towards these calls, evidence was found for a right ear/left hemisphere dominance for the processing of calls of the other sex (Binomial test: p = 0.021, N = 10). Familiarity had no effect on the orientation biases.

Conclusions/Significance

The findings in this study support the growing consensus that auditory laterality is not only determined by the acoustic processing of conspecific communication, but also by other factors like the sex of the sender.  相似文献   
87.
Arnaud Mourier 《BBA》2008,1777(10):1283-1288
Aerobically grown yeast cells express mitochondrial lactate dehydrogenases that localize to the mitochondrial inner membrane. The d-lactate dehydrogenase is a zinc-flavoprotein with high acceptor specificity for cytochrome c, that catalyzes the oxidation of d-lactate into pyruvate. In this paper, we show that mitochondrial respiratory rate in phosphorylating or non-phosphorylating conditions with d-lactate as substrate is stimulated by carboxylic acids. This stimulation does not affect the yield of oxidative phosphorylation. Furthermore, this stimulation lies at the level of the d-lactate dehydrogenase. It is non-competitive, hyperbolic and its dimension is directly related to the number of carboxylic groups on the activator. The physiological meaning of such a regulation is discussed.  相似文献   
88.
Data collected from a longitudinal survey carried out over 2 years on four farms in western France were used to assess the incidence and infestation of Ixodes ricinus on rodents. Once a month, on each farm, 25 Sherman live traps were set in hedges bordering selected pastures. A total of 799 micromammals were examined, including Apodemus sylvaticus, Clethrionomys glareolus, Microtus agrestis, Microtus arvalis, and Crocidura spp. Larvae and nymphs of I. ricinus were found. Small numbers of Ixodes (Exopalpiger) trianguliceps were also recovered from each farm. The mean infestation rate of the I. ricinus larvae (1.6–5.9) among all animals examined varied between farms Most animals were infested by only a single tick, but one M. agrestis harboured 43 I. ricinus larvae. Larvae or nymphs were found throughout the year, with peaks from March to October.  相似文献   
89.
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.  相似文献   
90.
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号