首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   214篇
  国内免费   2篇
  2325篇
  2023年   17篇
  2022年   26篇
  2021年   50篇
  2020年   42篇
  2019年   34篇
  2018年   46篇
  2017年   42篇
  2016年   71篇
  2015年   132篇
  2014年   123篇
  2013年   152篇
  2012年   180篇
  2011年   173篇
  2010年   119篇
  2009年   92篇
  2008年   140篇
  2007年   150篇
  2006年   112篇
  2005年   81篇
  2004年   94篇
  2003年   82篇
  2002年   63篇
  2001年   38篇
  2000年   19篇
  1999年   15篇
  1998年   16篇
  1997年   10篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   17篇
  1991年   11篇
  1990年   14篇
  1989年   6篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   13篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1971年   8篇
  1969年   4篇
排序方式: 共有2325条查询结果,搜索用时 0 毫秒
21.
22.
23.
This study was carried out to assess manganese (Mn) status after an acute episode of myocardial infarction. Plasma and erythrocyte Mn concentrations were measured from admission to hospital to day 15 postadmission in 21 patients suffering from acute myocardial infarction and in three control groups. The determination of Mn in these biological fluids was performed by electrothermal atomic absorption spectrometry. Plasma Mn was higher (p<0.01) and erythrocyte Mn was similar in the acute myocardial infarction group compared to healthy age-matched control group. Plasma and erythrocyte Mn remained unchanged during the 2 wk after acute myocardial infarction and were not correlated to enzyme activities. A decrease of erythrocyte Mn with age, expressed in nmol/L, was noted (p<0.02). These results suggest that plasma and erythrocyte Mn do not provide an indication of myocardial damage. Nonetheless, Mn status in elderly merits further attention.  相似文献   
24.
Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden–Meyerhoff–Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes.  相似文献   
25.
Senescence is an irreversible cell‐cycle arrest that is elicited by a wide range of factors, including replicative exhaustion. Emerging evidences suggest that cellular senescence contributes to ageing and acts as a tumour suppressor mechanism. To identify novel genes regulating senescence, we performed a loss‐of‐function screen on normal human diploid fibroblasts. We show that downregulation of the AMPK‐related protein kinase 5 (ARK5 or NUAK1) results in extension of the cellular replicative lifespan. Interestingly, the levels of NUAK1 are upregulated during senescence whereas its ectopic expression triggers a premature senescence. Cells that constitutively express NUAK1 suffer gross aneuploidies and show diminished expression of the genomic stability regulator LATS1, whereas depletion of NUAK1 with shRNA exerts opposite effects. Interestingly, a dominant‐negative form of LATS1 phenocopies NUAK1 effects. Moreover, we show that NUAK1 phosphorylates LATS1 at S464 and this has a role in controlling its stability. In summary, our work highlights a novel role for NUAK1 in the control of cellular senescence and cellular ploidy.  相似文献   
26.
The mouse develops five pairs of mammary glands that arise during mid-gestation from five pairs of placodes of ectodermal origin. We have investigated the molecular mechanisms of mammary placode development using Lef1 as a marker for the epithelial component of the placode, and mice deficient for Fgf10 or Fgfr2b, both of which fail to develop normal mammary glands. Mammary placode induction involves two different signaling pathways, a FGF10/FGFR2b-dependent pathway for placodes 1, 2, 3 and 5 and a FGF10/FGFR2b-independent pathway for placode 4. Our results also suggest that FGF signaling is involved in the maintenance of mammary bud 4, and that Fgf10 deficient epithelium can undergo branching morphogenesis into the mammary fat pad precursor.  相似文献   
27.
This work demonstrated the constitutive expressionof peroxisome proliferator-activated receptor (PPAR)- and PPAR-in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR- expression induced by 10 µg/ml lipopolysaccharide (LPS) was observed, whereas PPAR- mRNA expression was not modified. 15-Deoxy-12,14-prostaglandin J2(15d-PGJ2) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (80%) and inducible nitric oxide synthase (iNOS) mRNA expression (80%), whereas troglitazone (10 µM) only inhibited iNOS mRNA expression (50%). 15d-PGJ2 decreasedLPS-induced interleukin (IL)-1 (25%) and tumor necrosis factor(TNF)- (40%) expression. Interestingly, troglitazone stronglydecreased TNF- expression (50%) but had no significant effect onIL-1 expression. 15d-PGJ2 was able to inhibitDNA-binding activity of both nuclear factor (NF)-B and AP-1.Troglitazone had no effect on NF-B activation and was shown toincrease LPS-induced AP-1 activation. 15d-PGJ2 andtroglitazone modulated the expression of LPS-induced iNOS, COX-2, andproinflammatory cytokines differently. Indeed, troglitazone seems tospecifically target TNF- and iNOS pathways. These results offer newinsights in regard to the anti-inflammatory potential of the PPAR-ligands and underline different mechanisms of action of15d-PGJ2 and troglitazone in synovial fibroblasts.

  相似文献   
28.
Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical network, which would keep track of emotional information despite sleep deprivation.  相似文献   
29.
By its functional interaction with a RecA polymer, the mutagenic UmuD′C complex possesses an antirecombination activity. We show here that MucA′B, a functional homolog of the UmuD′C complex, inhibits homologous recombination as well. In F recipients expressing MucA′B from a Ptac promoter, Hfr × F recombination decreased with increasing MucA′B concentrations down to 50-fold. In damage-induced pKM101-containing cells expressing MucA′B from the native promoter, recombination between a UV-damaged F lac plasmid and homologous chromosomal DNA decreased 10-fold. Overexpression of MucA′B together with UmuD′C resulted in a synergistic inhibition of recombination. RecA[UmuR] proteins, which are resistant to UmuD′C inhibition of recombination, are inhibited by MucA′B while promoting MucA′B-promoted mutagenesis efficiently. The data suggest that MucA′B and UmuD′C contact a RecA polymer at distinct sites. The MucA′B complex was more active than UmuD′C in promoting UV mutagenesis, yet it did not inhibit recombination more than UmuD′C does. The enhanced mutagenic potential of MucA′B may result from its inherent superior capacity to assist DNA polymerase in trans-lesion synthesis. In the course of this work, we found that the natural plasmid pKM101 expresses around 45,000 MucA and 13,000 MucB molecules per lexA(Def) cell devoid of LexA. These molecular Muc concentrations are far above those of the chromosomally encoded Umu counterparts. Plasmid pKM101 belongs to a family of broad-host-range conjugative plasmids. The elevated levels of the Muc proteins might be required for successful installation of pKM101-like plasmids into a variety of host cells.  相似文献   
30.
The hypothesis that oxygen-derived free radicals play an important role in myocardial ischemic and reperfusion injury has received a lot of support. In the presence of catalytic amounts of transition metals such as iron, superoxide anions, and hydrogen peroxide can be transformed into a highly reactive hydroxyl radical °OH (Haber-Weiss reaction). In view of this, we have undertaken this study to investigate whether iron is involved in the reperfusion syndrome and therefore could aggravate free radicals injury. Coronary effluent iron concentrations and cardiac cytosolic iron levels were evaluated in rat hearts subjected to an ischemia/reperfusion sequences. In the case of total ischemia, iron concentration in coronary effluents peaked immediately in the first sample collected upon reperfusion. However, in the case of partial ischemia, iron concentration in coronary effluents peaked rather exclusively during ischemia period. Cardiac cytosolic iron level augmented significantly after 30 min of total ischemia and non significantly in the other ischemia protocols compared to perfused control hearts. It also appears that the iron released is not protein-bound, and could therefore have a marked catalytic activity. The results of the present study suggest that in the oxygen paradox, iron plays an important role in inducing alterations during reoxygenation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号