全文获取类型
收费全文 | 108篇 |
免费 | 14篇 |
专业分类
122篇 |
出版年
2022年 | 4篇 |
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 8篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 13篇 |
2014年 | 4篇 |
2013年 | 7篇 |
2012年 | 8篇 |
2011年 | 12篇 |
2010年 | 8篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 7篇 |
2005年 | 2篇 |
2004年 | 2篇 |
2002年 | 6篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1995年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1985年 | 2篇 |
排序方式: 共有122条查询结果,搜索用时 15 毫秒
11.
Miriam Masià-Balagué Ismael Izquierdo Georgina Garrido Arnau Cordomí Laura Pérez-Benito Nichol L. G. Miller David D. Schlaepfer Véronique Gigoux Anna M. Aragay 《The Journal of biological chemistry》2015,290(24):15197-15209
The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279–1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells. 相似文献
12.
High‐throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae 下载免费PDF全文
Xue Liu Clement Gallay Morten Kjos Arnau Domenech Jelle Slager Sebastiaan P van Kessel Kèvin Knoops Robin A Sorg Jing‐Ren Zhang Jan‐Willem Veening 《Molecular systems biology》2017,13(5)
Genome‐wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae. However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn‐seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high‐content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi‐based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp‐proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP‐dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets. 相似文献
13.
14.
Isabella Y. Kong Stephanie Trezise Amanda Light Izabela Todorovski Gisela Mir Arnau Sreeja Gadipally David Yoannidis Kaylene J. Simpson Xueyi Dong Lachlan Whitehead Jessica C. Tempany Anthony J. Farchione Amania A. Sheikh Joanna R. Groom Kelly L. Rogers Marco J. Herold Vanessa L. Bryant Matthew E. Ritchie Simon N. Willis Ricky W. Johnstone Philip D. Hodgkin Stephen L. Nutt Stephin J. Vervoort Edwin D. Hawkins 《Cell death and differentiation》2022,29(12):2519
15.
Bacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genus Rhodococcus and taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes from Rhodococcus sp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genus Rhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloning Burkholderia cenocepacia putative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in the Candida antarctica lipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases. 相似文献
16.
17.
Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits 下载免费PDF全文
Complex traits are under the genetic control of multiple genes, often with weak effects and strong epistatic interactions. We developed two new collections of mouse strains to improve genetic dissection of complex traits. They are derived from several backcrosses of the Mus spretus SEG/Pas or STF/Pas strains on the C57BL/6J background. Each of the 55 interspecific recombinant congenic strains (IRCSs) carries up to eight SEG/Pas chromosomal segments with an average size of 11.7 Mb, totalizing 1.37% of the genome. The complete series covers 39.7% of the SEG/Pas genome. As a complementary resource, six partial or complete interspecific consomic strains were developed and increased genome coverage to 45.6%. To evaluate the usefulness of these strains for QTL mapping, 16 IRCSs were compared with C57BL/6J for seven hematological parameters. Strain 66H, which carries three SEG/Pas chromosomal segments, had lower red blood cell volume and higher platelet count than C57BL/6J. Each chromosomal segment was isolated in a congenic strain to evaluate individual effects. Congenic strains were combined to assess epistasis. Our data show that both traits were controlled by several genes with complex epistatic interactions. IRCSs are therefore useful to unravel QTL with small effects and gene-by-gene interactions. 相似文献
18.
Arnau Cordomí Jesus Gomez-Catalan Ana I Jimenez Carlos Cativiela Juan J Perez 《Journal of peptide science》2002,8(6):253-266
The conformational profile of the eight stereoisomeric 2-amino-3-phenylnorbornane-2-carboxylic acids (2-amino-3-phenylbicyclo[2.2.1]heptane-2-carboxylic acids) has been assessed by computational methods. These molecules constitute a series of four enantiomeric pairs that can be considered as rigid analogues of either L- or D-phenylalanine. The conformational space of their N-acetyl methylamide derivatives has been explored within the molecular mechanics framework, using the parm94 set of parameters of the AMBER force field. Local minimum energy conformations have been further investigated at the ab initio level by means of the Hartree-Fock and second order Moller-Plesset perturbation energy calculations using a 6-31G(d) basis set. The results of the present work suggest that the bulky norbornane structure induces two kinds of conformational constraints on the residues. On one hand, those of a steric nature directly imposed by the bicycle on the peptide backbone and, on the other hand, those that limit the orientations attainable by the phenyl ring which, in turn, reduces further the flexibility of the peptide backbone. A comparative analysis of the conformational profile of the phenylnorbornane amino acids with that of the norbornane amino acids devoid of the beta-phenyl substituent suggests that the norbornane system hampers the residue to adopt extended conformations in favour of C7-like structures. However, the bicycle itself does not impart a clear preference for any of the two possible C7 minima. It is the aromatic side chain, which is forced to adopt an almost eclipsed orientation, that breaks this symmetry introducing a marked preference for a single region of the (phi, psi) conformational space in each of the phenylalanine norbornane analogues investigated. 相似文献
19.
José Arnau Antonio Ortiz Juan C. Gomez-Fernández Francisco J. Murillo Santiago Torres-Martínez 《FEMS microbiology letters》1988,51(1):37-40
Abstract We describe here fusion between phospholipid vesicles (liposomes) and protoplasts to the fungus Phycomyces blakesleeanus . Both 6-carboxyfluorescein and the kanamycin resistance harboured by the plasmid have been transferred from liposomes to protoplasts of Phycomyces by the fusion technique. 相似文献
20.