首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   65篇
  国内免费   4篇
  2023年   8篇
  2022年   23篇
  2021年   36篇
  2020年   20篇
  2019年   31篇
  2018年   20篇
  2017年   15篇
  2016年   43篇
  2015年   63篇
  2014年   81篇
  2013年   87篇
  2012年   105篇
  2011年   88篇
  2010年   60篇
  2009年   47篇
  2008年   99篇
  2007年   70篇
  2006年   71篇
  2005年   53篇
  2004年   49篇
  2003年   43篇
  2002年   29篇
  2001年   24篇
  2000年   23篇
  1999年   9篇
  1998年   6篇
  1997年   11篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1992年   15篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1981年   3篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
  1968年   2篇
排序方式: 共有1359条查询结果,搜索用时 15 毫秒
41.
42.
Borrelia burgdorferi spirochetes that cause Lyme borreliosis survive for a long time in human serum because they successfully evade the complement system, an important arm of innate immunity. The outer surface protein E (OspE) of B. burgdorferi is needed for this because it recruits complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysis. To understand this process at the molecular level, we used a structural approach. First, we solved the solution structure of OspE by NMR, revealing a fold that has not been seen before in proteins involved in complement regulation. Next, we solved the x-ray structure of the complex between OspE and the FH C-terminal domains 19 and 20 (FH19-20) at 2.83 Å resolution. The structure shows that OspE binds FH19-20 in a way similar to, but not identical with, that used by endothelial cells to bind FH via glycosaminoglycans. The observed interaction of OspE with FH19-20 allows the full function of FH in down-regulation of complement activation on the bacteria. This reveals the molecular basis for how B. burgdorferi evades innate immunity and suggests how OspE could be used as a potential vaccine antigen.  相似文献   
43.
Traumatic brain injury (TBI) is a serious problem that affects millions of people in the United States alone. Multiple concussions or even a single moderate to severe TBI can also predispose individuals to develop a pathologically distinct form of tauopathy-related dementia at an early age. No effective treatments are currently available for TBI or TBI-related dementia; moreover, only recently has insight been gained regarding the mechanisms behind their connection. Here, we used antibodies to detect oligomeric and phosphorylated Tau proteins in a non-transgenic rodent model of parasagittal fluid percussion injury. Oligomeric and phosphorylated Tau proteins were detected 4 and 24 h and 2 weeks post-TBI in injured, but not sham control rats. These findings suggest that diagnostic tools and therapeutics that target only toxic forms of Tau may provide earlier detection and safe, more effective treatments for tauopathies associated with repetitive neurotrauma.  相似文献   
44.
The tumor suppressor p53 plays an important role in genome integrity. It is frequently mutated in all types of human cancers, making p53 a key factor in cancer progression. Two phenotypic consequences of these alterations are dominant; a loss of function and a gain of function of p53, which, in several cases, accumulates in intracellular aggregates. Although the nature of such aggregates is still unclear, recent evidence indicates that p53 can undergo conformational transitions leading to amyloid formation. Amyloid diseases, such as, Alzheimer’s disease, are characterized by the accumulation of insoluble aggregates displaying the fibrillar conformation. We decided to investigate the propensity of wild type p53 to aggregate and its consequent assembly into different amyloid species, such as oligomers and fibrils; and to determine if these changes in conformation lead to a loss of function of p53. Furthermore, we analyzed cases of Basal Cell Carcinoma (BCC), for the presence of p53 amyloids. Here, we show that p53 forms amyloid oligomers and fibrils, which coincide with p53 inability of binding to DNA consensus sequences. Both p53 amyloid oligomers and fibrils were detected in BCC cancer samples. Additionally, we demonstrate that p53 oligomers are the most cytotoxic to human cell cultures.Our study reveals p53 amyloid formation and demonstrates its dual role in the pathogenesis of cancer by producing a loss of protein function and a gain of toxic function, extensively described in several amyloidogenic diseases. Our results suggest that under certain circumstances, cancer could be considered a protein-conformation disease.  相似文献   
45.
"The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups."  相似文献   
46.
Survivin, a member of the inhibitor of apoptosis protein (IAP) family proteins, has essential roles in cell division and inhibition of apoptosis. Several clinical studies in cancer patients have shown that the elevated levels of survivin correlate with aggressiveness of the disease and resistance to radiation and chemotherapeutic treatments. Survivin is an integral component of chromosomal passenger complex (CPC) where it binds to borealin and INCENP through its dimerization interface. Thus, disruption of functional survivin along its dimer interface with a small molecule is hypothesized to inhibit the proliferation of cancer cells and sensitize them to therapeutic agents and radiation. Recently, a small molecule (Abbott8) was reported to bind at the dimerization interface of survivin. Further development of this compound was accomplished by computational modeling of the molecular interactions along the dimerization interface, which has led to the design of promising survivin dimerization modulators. Two of the most potent survivin modulators, LLP3 and LLP9 at concentrations between 50 and 100 nM, caused delay in mitotic progression and major mitotic defects in proliferating human umbilical vein endothelial cells (HUVEC) and prostate cancer cells (PC3).  相似文献   
47.
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号