首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   89篇
  国内免费   5篇
  2023年   10篇
  2022年   16篇
  2021年   26篇
  2020年   15篇
  2019年   22篇
  2018年   22篇
  2017年   20篇
  2016年   40篇
  2015年   51篇
  2014年   57篇
  2013年   70篇
  2012年   80篇
  2011年   79篇
  2010年   51篇
  2009年   37篇
  2008年   59篇
  2007年   59篇
  2006年   57篇
  2005年   30篇
  2004年   23篇
  2003年   23篇
  2002年   17篇
  2001年   13篇
  2000年   15篇
  1999年   8篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1969年   6篇
  1968年   3篇
排序方式: 共有1042条查询结果,搜索用时 546 毫秒
121.
Rapid development of next generation sequencing (NGS) technologies in recent years has made whole genome sequencing of bacterial genomes widely accessible. However, it is often unnecessary or not feasible to sequence the whole genome for most applications of genetic analyses in bacteria. Selectively capturing defined genomic regions followed by NGS analysis could be a promising approach for high-resolution molecular typing of a large set of strains. In this study, we describe a novel and straightforward PCR-based target-capturing method, hairpin-primed multiplex amplification (HPMA), which allows for simultaneous amplification of numerous target genes. To test the feasibility of NGS-based strain typing using HPMA, 20 target gene sequences were simultaneously amplified with barcode tagging in each of 41 Salmonella strains. The amplicons were then pooled and analyzed by 454 pyrosequencing. Analysis of the sequence data, as an extension of multilocus sequence typing (MLST), demonstrated the utility and potential of this novel typing method, MLST-seq, as a high-resolution strain typing method. With the rapidly increasing sequencing capacity of NGS, MLST-seq or its variations using different target enrichment methods can be expected to become a high-resolution typing method in the near future for high-throughput analysis of a large collection of bacterial strains.  相似文献   
122.
Mycobacterial plasmid pAL5000 represents a family of plasmids found mostly in the Actinobacteria. It replicates using two plasmid-encoded proteins, RepA and RepB. While BLAST searches indicate that RepA is a replicase family protein, the evolutionary connection of RepB cannot be established, as no significant homologous partner (E < 10(-3)) outside the RepB family can be identified. To obtain insight into the structure-function and evolutionary connections of RepB, an investigation was undertaken using homology modeling, phylogenetic, and mutational analysis methods. The results indicate that although they are synthesized from the same operon, the phylogenetic affinities of RepA and RepB differ. Thus, the operon may have evolved through random breaking and joining events. Homology modeling predicted the presence of a three-helical helix-turn-helix domain characteristic of region 4 of extracytoplasmic function (ECF) σ factors in the C-terminal region of RepB. At the N-terminal region, there is a helical stretch, which may be distantly related to region 3 of σ factors. Mutational analysis identified two arginines indispensable for RepB activity, one each located within the C- and N-terminal conserved regions. Apart from analyzing the domain organization of the protein, the significance of the presence of a highly conserved A/T-rich element within the RepB binding site was investigated. Mutational analysis revealed that although this motif does not bind RepB, its integrity is important for efficient DNA-protein interactions and replication to occur. The present investigation unravels the possibility that RepB-like proteins and their binding sites represent ancient DNA-protein interaction modules.  相似文献   
123.
Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.  相似文献   
124.
Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca2+ homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61–83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection.  相似文献   
125.
The role of the C(8) gem-dimethyl group in the A-ring of bryostatin 1 has been examined through chemical synthesis and biological evaluation of a new analogue. Assays for biological function using U937, K562, and MV4-11 cells as well as the profiles for downregulation of PKC isozymes revealed that the presence of this group is not a critical determinant for the unique pattern of biological activity of bryostatin.  相似文献   
126.
127.
M Dewan  A Kumar  A Saxena  A De  S Mozumdar 《PloS one》2012,7(8):e43078
We recently reported a novel synthesis of copper nanoparticles from copper sulphate utilizing the charge-compensatory effect of ionic liquid [bmim]BF(4) and ethylene glycol. The nanoparticles were characterized and found to be stable for one year. Here we hypothesize that the stabilized nanoparticles should be able to catalyze one-pot multicomponent organic reactions. We show that the nanoparticles catalyzed Biginelli reaction at room temperature to give the product 3,4-dihydopyrimidinone (>90% yield in ~15 minutes) from aldehydes, β-diketoester (ethylacetoacetate) and urea (or thiourea). ). Remarkably, such high yields and rapid kinetics was found to be independent of the electronic density on the reactant aryl-aldehyde. This was probably because even the surface-active particles reacted faster in the presence of ionic liquid as compared to conventional methods. The heterocyclic dihydropyrimidinones (DHPMs) and their derivatives are widely used in natural and synthetic organic chemistry due to their wide spectrum of biological and therapeutic properties (resulting from their antibacterial, antiviral, antitumor and anti-inflammatory activities. Our method has an easy work-up procedure and the nanoparticles could be recycled with minimal loss of efficiency.  相似文献   
128.
The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SR(QLD)), New South Wales (SR(NSW)) and South Australia (SR(SA)), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SR(QLD) and SR(NSW). We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SR(SA) and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.  相似文献   
129.
Heterotrophic carbon utilizing microbes were acclimatized in the laboratory by inoculating sludge collected from the waste discharge pond of a small-scale rural abattoir in India in a nutrient solution intermittently fed with glucose and ammonium chloride. Cultures of 10 well-developed isolates were selected and grown in a basal medium containing glucose and ammonium chloride. Culture supernatants were periodically analyzed for ammonium nitrogen (NH4 +-N) and chemical oxygen demand (COD). Polyphasic taxonomic study of the most active nitrifier (S18) was done. Half saturation concentration (K s), maximum rate of substrate utilization (k), yield coefficient (Y) and decay coefficient (K d) were determined from the Lineweaver–Burk plot using the modified Monod equation. S18 was able to remove 97 ± 2% of (NH4 +-N) and 88 ± 3% of COD. Molecular phylogenetic study supported by physiological and biochemical characteristics assigned S18 as Achromobacter xylosoxidans. Nitrification activity of A. xylosoxidans was demonstrated for the first time, while interestingly, the distinctive anaerobic denitrification property was preserved in S18. K s values were determined as 232.13 ± 1.5 mg/l for COD reduction and 2.131 ± 1.9 mg/l for NH4 +-N utilization. Yield coefficients obtained were 0.4423 ± 0.1134 mg of MLVSS/mg of COD and 0.2461 ± 0.0793 mg of MLVSS/mg of NH4 +-N while the decay coefficients were 0.0627 ± 0.0013 per day and 0.0514 ± 0.0008 per day, respectively. After a contact period of 24 h, 650 ± 5 mg/l solids were produced when the initial concentration of COD and NH4 +-N were 1820 ± 10 mg/l and 120 ± 5.5 mg/l, respectively. This is the first report on the kinetic coefficients for carbon oxidation and nitrification by a single bacterium isolated from slaughterhouse wastewater.  相似文献   
130.
Alterations in photosynthetic capacity of primary leaves of wheat seedlings in response to ultraviolet-B (UV-B; 280–320 nm; 60 μmol m−2 s−1) exposure alone and in combination with photosynthetically active radiation (PAR; 400–800 nm; 200 μmol m−2 s−1) during different phases of leaf growth and development were assessed. UV-B exposure resulted in a phase-dependent differential loss in photosynthetic pigments, photochemical potential, photosystem 2 (PS2) quantum yield, and in vivo O2 evolution. UV-B exposure induced maximum damage to the photosynthetic apparatus during senescence phase of development. The damages were partially alleviated when UV-B exposure was accompanied by PAR. UV-B induced an enhancement in accumulation of flavonoids during all phases of development while it caused a decline in anthocyanin content during senescence. The differential changes in these parameters demonstrated the adaptation ability of leaves to UV-B stress during all phases of development and the ability was modified in UV-B+ PAR exposed samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号