首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1271篇
  免费   94篇
  2023年   7篇
  2022年   15篇
  2021年   14篇
  2020年   23篇
  2019年   16篇
  2018年   19篇
  2017年   24篇
  2016年   36篇
  2015年   49篇
  2014年   65篇
  2013年   75篇
  2012年   98篇
  2011年   100篇
  2010年   66篇
  2009年   44篇
  2008年   65篇
  2007年   75篇
  2006年   81篇
  2005年   72篇
  2004年   64篇
  2003年   48篇
  2002年   51篇
  2001年   13篇
  2000年   10篇
  1999年   12篇
  1998年   16篇
  1997年   7篇
  1996年   8篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1969年   5篇
  1968年   4篇
  1967年   4篇
  1881年   8篇
排序方式: 共有1365条查询结果,搜索用时 46 毫秒
101.
Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G3 animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.  相似文献   
102.
103.
104.
The four functionally expressed human neuropeptide Y receptor subtypes (hY(1)R, hY(2)R, hY(4)R, hY(5)R) belong to class A of the G-protein-coupled receptors (GPCRs) and interact with pertussis toxin-sensitive G(i/o)-proteins. The number of small molecules described as ligands for hY(1)R and hY(5)R exceeds by far those for hY(2)R. Potent non-peptidergic ligands for the hY(4)R are not available so far. Here, we report on the functional reconstitution of the hY(2)R and the hY(4)R in Sf9 insect cells using the baculovirus system. Sf9 cells were genetically engineered by infection with up to four different baculoviruses, combining the receptors with G-proteins of the G(i/o) family and regulators of G-protein signaling (RGS) proteins to improve signal-to-noise ratio. In steady-state GTPase assays, using pNPY (Y(2)) and hPP (Y(4)), the GPCRs coupled to various G(i)/G(o)-proteins and both, RGS4 and GAIP, enhanced the signals. Co-expression systems hY(2)R + G?(i2) and hY(4)R + G?(i2)/G?(o) + RGS4, combined with G?(1)?(2), yielded best signal-to-noise ratios. hY(2)R function was validated using both agonistic peptides (NPY, PYY, NPY(13?36)) and selective non-peptidergic antagonists (BIIE0246 and derivatives), whereas the hY(4)R model was characterized with peptidergic agonists (PP, NPY, GW1229, and BW1911U90). Tunicamycin inhibited receptor N-glycosylation diminished NPY signals at hY(2)R and abolished hY(4)R function. Investigations with monovalent salts showed sensitivity of hY(4)R toward Na(+), revealing moderate constitutive activity. After validation, an acylguanidine (UR-PI284) was identified as a weak non-peptide Y(4)R antagonist. In summary, the established steady-state GTPase assays provide sensitive test systems for the characterization of Y(2) and Y(4) receptor ligands.  相似文献   
105.
106.
107.

Objective

To explore the capacity of human CD14+CD16++ and CD14++CD16- monocytes to phagocyte iron-oxide nanoparticles in vitro.

Methods

Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers.

Results

Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14++CD16- monocytes displayed a significantly higher uptake compared to CD14+CD16++ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14+CD16++ and CD14++CD16- monocytes differently.

Conclusion

Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.  相似文献   
108.

Background

Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out?

Results

In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri.

Conclusions

Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号