首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   17篇
  2021年   3篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   10篇
  2013年   23篇
  2012年   27篇
  2011年   18篇
  2010年   17篇
  2009年   13篇
  2008年   13篇
  2007年   14篇
  2006年   16篇
  2005年   23篇
  2004年   14篇
  2003年   13篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1970年   3篇
  1969年   1篇
排序方式: 共有344条查询结果,搜索用时 156 毫秒
41.
We have recently reconstructed the ??hatcheries?? of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821?C830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy.  相似文献   
42.
Proteolytic degradation of fibrin, the major structural component in blood clots, is critical both during normal wound healing and in the treatment of ischemic stroke and myocardial infarction. Fibrin-containing clots experience substantial strain due to platelet contraction, fluid shear, and mechanical stress at the wound site. However, little is understood about how mechanical forces may influence fibrin dissolution. We used video microscopy to image strained fibrin clots as they were degraded by plasmin, a major fibrinolytic enzyme. Applied strain causes up to 10-fold reduction in the rate of fibrin degradation. Analysis of our data supports a quantitative model in which the decrease in fibrin proteolysis rates with strain stems from slower transport of plasmin into the clot. We performed fluorescence recovery after photobleaching (FRAP) measurements to further probe the effect of strain on diffusive transport. We find that diffusivity perpendicular to the strain axis decreases with increasing strain, while diffusivity along the strain axis remains unchanged. Our results suggest that the properties of the fibrin network have evolved to protect mechanically loaded fibrin from degradation, consistent with its function in wound healing. The pronounced effect of strain upon diffusivity and proteolytic susceptibility within fibrin networks offers a potentially useful means of guiding cell growth and morphology in fibrin-based biomaterials.  相似文献   
43.
The mechanism of the Golgi-to-ER transport of Golgi glycosyltransferases is not clear. We utilize a cell line expressing the core 2 N-acetylglucosaminyltransferase-M (C2GnT-M) tagged with c-Myc to explore this mechanism. By immunoprecipitation using anti-c-Myc antibodies coupled with proteomics analysis, we have identified several proteins including non-muscle myosin IIA (NMIIA), heat shock protein (HSP)-70 and ubiquitin activating enzyme E1 in the immunoprecipitate. Employing yeast-two-hybrid analysis and pulldown experiments, we show that the C-terminal region of the NMIIA heavy chain binds to the 1-6 amino acids in the cytoplasmic tail of C2GnT-M. We have found that NMIIA co-localizes with C2GnT-M at the periphery of the Golgi. In addition, inhibition or knockdown of NMIIA prevents the brefeldin A-induced collapse of the Golgi as shown by the inhibition of the migration of both Giantin, a Golgi matrix protein, and C2GnT-M, a Golgi non-matrix protein, to the ER. In contrast, knockdown of HSP70 retains Giantin in the Golgi but moves C2GnT-M to the ER, a process also blocked by inhibition or knockdown of NMIIA. Also, the intracellular distribution of C2GnT-M is not affected by knockdown of β-coatomer protein with or without inhibition of HSPs, suggesting that the Golgi-to-ER trafficking of C2GnT-M does not depend on coat protein complex-I. Further, inhibition of proteasome results in accumulation of ubiquitinated C2GnT-M, suggesting its degradation by proteasome. Therefore, NMIIA and not coat protein complex-I is responsible for transporting the Golgi glycosyltransferase to the ER for proteasomal degradation. The data suggest that NMIIA is involved in the Golgi remodeling.  相似文献   
44.
Molecular hydrogen (H(2)) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H(2)-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH](out)) and the presence of formate. FHL is related with the F(0)F(1)-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H(2)-oxidizing enzymes during glucose fermentation at neutral and low [pH](out). They operate in a reverse, H(2)-producing mode during glycerol fermentation at neutral [pH](out). Hyd-1 and Hyd-2 activity depends on F(0)F(1). Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H(2) production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H(2) production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H(2) production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.  相似文献   
45.
46.
Photosynthetic reaction centers of Blastochloris viridis require two quanta of light to catalyse a two-step reduction of their secondary ubiquinone Q(B) to ubiquinol. We employed capacitive potentiometry to follow the voltage changes that were caused by the accompanying transmembrane proton displacements. At pH 7.5 and 20 degrees C, the Q(B)-related voltage generation after the first flash was contributed by a fast, temperature-independent component with a time constant of approximately 30 micros and a slower component of approximately 200 micros with activation energy (E(a)) of 50 kJ/mol. The kinetics after the second flash featured temperature-independent components of 5 micros and 200 micros followed by a component of 600 micros with E(a) approximately 60 kJ/mol.  相似文献   
47.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   
48.
Local neurons play key roles in the mammalian olfactory bulb   总被引:1,自引:0,他引:1  
Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in understanding the general neural mechanisms involved in both sensory perception and memory. Due to space constraints, this review focuses exclusively on the olfactory systems of vertebrates and primarily those of mammals.  相似文献   
49.
Escherichia coli accumulates K+ by means of multiple uptake systems of which Kup is the major transport system at acidic pH. In cells grown under fermentative conditions at pH 5.5, K+ influx by a wild-type strain upon hyper-osmotic stress at pH 5.5 was accompanied by a marked decrease in H+ efflux, with a 1:1 ratio of K+ to H+ fluxes. This was observed with cells treated with N,N'-dicyclohexylcarbodiimide. Similar results with a mutant defective in Kdp and TrkA but with a functional Kup system but not in a mutant defective in Kdp and Kup but having an active TrkA system suggest that Kup operates as a H+ -K+ -symporter.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号