首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   35篇
  334篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   19篇
  2012年   20篇
  2011年   26篇
  2010年   16篇
  2009年   20篇
  2008年   16篇
  2007年   15篇
  2006年   18篇
  2005年   19篇
  2004年   19篇
  2003年   21篇
  2002年   18篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
231.
We have characterized the Bacillus subtilis homologs of fructoselysine 6-kinase and fructoselysine-6-phosphate deglycase, two enzymes that specifically metabolize the Amadori compound fructose-epsilon-lysine in Escherichia coli. The B. subtilis enzymes also catalyzed the phosphorylation of fructosamines to fructosamine 6-phosphates (YurL) and the conversion of the latter to glucose 6-phosphate and a free amino acid (YurP). However, their specificity was totally different from that of the E. coli enzymes, since they acted on fructoseglycine, fructosevaline (YurL) or their 6-phosphoderivatives (YurP) with more than 30-fold higher catalytic efficiencies than on fructose-alpha-lysine (6-phosphate). These enzymes are therefore involved in the metabolism of alpha-glycated amino acids.  相似文献   
232.
Neurofibrillary tangles (NFTs) are classic lesions of Alzheimer's disease. NFTs are bundles of abnormally phosphorylated tau, the paired helical filaments. The initiating mechanisms of NFTs and their role in neuronal loss are still unknown. Accumulating evidence supports a role for the activation of proteolytic enzymes, caspases, in neuronal death observed in brains of patients with Alzheimer's disease. Alterations in tau phosphorylation and tau cleavage by caspases have been previously reported in neuronal apoptosis. However, the links between the alterations in tau phosphorylation and its proteolytic cleavage have not yet been documented. Here, we show that, during staurosporine-induced neuronal apoptosis, tau first undergoes transient hyperphosphorylation, which is followed by dephosphorylation and cleavage. This cleavage generated a 10-kDa fragment in addition to the 17- and 50-kDa tau fragments previously reported. Prior tau dephosphorylation by a glycogen synthase kinase-3beta inhibitor, lithium, enhanced tau cleavage and sensitized neurons to staurosporine-induced apoptosis. Caspase inhibition prevented tau cleavage without reversing changes in tau phosphorylation linked to apoptosis. Furthermore, the microtubule depolymerizing agent, colchicine, induced tau dephosphorylation and caspase-independent tau cleavage and degradation. Both phenomena were blocked by inhibiting protein phosphatase 2A (PP2A) by okadaic acid. These experiments indicate that tau dephosphorylation precedes and is required for its cleavage and degradation. We propose that the absence of cleavage and degradation of hyperphosphorylated tau (due to PP2A inhibition) may lead to its accumulation in degenerating neurons. This mechanism may contribute to the aggregation of hyperphosphorylated tau into paired helical filaments in Alzheimer's disease where reduced PP2A activity has been reported.  相似文献   
233.
The land snail Cornu aspersum (syn. Helix aspersa) living in Brittany (France) can be considered partially freezing tolerant as it possesses a low ability to supercool and a limited capacity to bear freezing of its body tissues. The absence of a marked cold hardiness strategy permits the emphasis of the role of parameters such as individual size or water mass (W(M)) contained by the organism. Adult snails (shell diameter 30-32 mm) had a supercooling ability, about 1-1.5 degrees C lower than that of immatures (shell diameter 12-20 mm) and survived longer to an exposure to -5 degrees C, with an Lt(50) comprised between 6.0 and 9.8 h against 2.6 to 4.2 h for immature snails. This better ability to bear freezing was explained by the faster dynamic of body ice formation observed in small individuals, which attained ice lethal quantity more rapidly. At the species level, large snails will then tend to be more tolerant to freezing and small ones to be freezing avoidant, a statement also observable at the phylum level.  相似文献   
234.
To characterize the interaction of peripheral proteins and membranes at the molecular level, we studied the reversible association of bovine alpha-lactalbumin (BLA) with lipid bilayers composed of different molecular forms of phosphatidylserine or equimolar mixtures of these phosphatidylserine forms and egg yolk phosphatidylcholine. At pH 4.5, almost all BLA (>90%) associates to negatively charged small unilamellar vesicles. The conformational changes that binding to these bilayers induced on the protein were characterized by circular dichroism and fluorescence spectroscopy. Because binding of BLA to negatively charged vesicles is reverted by adjusting the pH back to >6.0, we also investigated the conformation of the membrane-bound protein by NMR-monitored H-D exchange of the backbone amide protons. The conformation adopted by BLA bound to these bilayers resembles a molten globule-like state but the negative ellipticity at 222 nm and the apparent alpha-helix content of the bound protein senses the changes in the physical properties of the membrane. Binding to bilayers in the gel state appears to correlate with an increased amount of alpha-helical structure and with a lower extent of integration into the membrane, corresponding to the adsorbed protein, while the opposite is found for BLA bound to vesicles in the liquid-crystalline phase, corresponding to the embedded conformation. A common feature for the membrane-bound conformations of BLA is that the amphipathic helix C (residues 86 to 99) is an important determinant for the adsorption and further integration of the protein into the membrane.  相似文献   
235.
236.
Ultraviolet A (UVA) (320-400 nm)radiation is known to cause cutaneous aging and skin cancer. We studiedthe effect of UVA (365 nm) radiation on the human epidermis by focusingon keratinocyte gap junction-mediated intercellular communication(GJIC). We observed a dose-dependent 10-fold decrease in GJIC inducedby UVA in normal human keratinocytes. This decrease in GJIC wasassociated with time-dependent internalization of connexin43 (Cx43).UVA radiation also damaged the actin cytoskeleton, as shown bymicrofilament disappearance. Importantly, the decrease in GJIC wastransient when keratinocytes were irradiated with 10 J/cm2UVA, with a return to baseline values after 8 h. Concomitantly, Cx43 was relocalized and the actin cytoskeleton was restored. UVAirradiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment activated protein kinase C and reduced GJIC. However, Cx43localization and phosphorylation were differently regulated by the twotreatments. This suggests that at least two different pathways maymediate the observed fall in GJIC. These findings identify keratinocyteGJIC as a new UVA target that might sensitize human skin to photoagingand cancer formation.

  相似文献   
237.
We show in this study that human T cells purified from peripheral blood, T cell clones, and Jurkat T cells release microvesicles in the culture medium. These microvesicles have a diameter of 50-100 nm, are delimited by a lipidic bilayer membrane, and bear TCR beta, CD3epsilon, and zeta. This microvesicle production is regulated because it is highly increased upon TCR activation, whereas another mitogenic signal, such as PMA and ionomycin, does not induce any release. T cell-derived microvesicles also contain the tetraspan protein CD63, suggesting that they originate from endocytic compartments. They contain adhesion molecules such as CD2 and LFA-1, MHC class I and class II, and the chemokine receptor CXCR4. These transmembrane proteins are selectively sorted in microvesicles because CD28 and CD45, which are highly expressed at the plasma membrane, are not found. The presence of phosphorylated zeta in these microvesicles suggests that the CD3/TCR found in the microvesicles come from the pool of complexes that have been activated. Proteins of the transduction machinery, tyrosine kinases of the Src family, and c-Cbl are also observed in the T cell-derived microvesicles. Our data demonstrate that T lymphocytes produce, upon TCR triggering, vesicles whose morphology and phenotype are reminiscent of vesicles of endocytic origin produced by many cell types and called exosomes. Although the exact content of T cell-derived exosomes remains to be determined, we suggest that the presence of TCR/CD3 at their surface makes them powerful vehicles to specifically deliver signals to cells bearing the right combination of peptide/MHC complexes.  相似文献   
238.
In normal mice, single-positive thymocytes proliferate before being exported into the peripheral T cell pool. We measured the in vivo proliferation rates of mature thymocytes in several TCR transgenic mice. Different monoclonal TCR transgenic single-positive thymocytes proliferated at different rates in a given MHC context. Conversely, mature thymocytes expressing a given TCR, generated in mice of different MHC haplotypes, also showed different rates of proliferation. In p59(fyn)-deficient mice, the proliferation rate of mature thymocytes was diminished. Thus, premigrant thymocyte expansion is TCR mediated and depends on TCR affinity for self peptide/MHC ligands. In addition, we show that mature thymocyte expansion is clonotypic, increases the daily thymic T cell output, and modifies the TCR repertoire of newly produced T cells.  相似文献   
239.
The land snail Helix aspersa is a partially freezing tolerant species whose supercooling ability is limited to ca. -3 to -5 degrees C. One hundred adult snails were subjected to the following two experimental conditions: (i) a starved group, provided with water; (ii) an antibiotic-treated group that was provided with a solution containing a mixture of two antibiotics. The antibiotic group exhibited a T(c) significantly lower than the starved group (-3.94 +/- 1.32 degrees C, n = 40 and -3.07 +/- 0.99, n = 30, t test, p < 0.005). This study showed that bacteria of the gut are likely to elevate animal supercooling points. It is also the first report in which a possible ice-nucleating activity of the gut microflora in a land snail has been suggested by the action of antibiotics on the T(c).  相似文献   
240.
Roles for T and NK cells in the innate immune response to Shigella flexneri   总被引:4,自引:0,他引:4  
Shigella flexneri, an enteroinvasive Gram-negative bacterium, is responsible for the worldwide endemic form of bacillary dysentery. The host response to primary infection is characterized by the induction of an acute inflammation, which is accompanied by polymorphonuclear cell (PMN) infiltration, resulting in massive destruction of the colonic mucosa. However, PMN play a major role in the recovery from primary infection, by restricting the bacterial infection at the intestinal mucosa. In this study, we assessed the roles for T and NK cells in the control of primary S. flexneri infection, using an alymphoid mouse strain (Rag null gamma(c) null) devoid of B, T, and NK cells. Using the mouse pulmonary model of Shigella infection, we showed that alymphoid Rag null gamma(c) null mice were highly susceptible to S. flexneri infection in comparison with wild-type (wt) mice. Whereas PMN recruitment upon infection was similar, macrophage recruitment and production of proinflammatory cytokines were significantly decreased in Rag null gamma(c) null mice compared with wt mice. Upon selective engraftment of Rag null gamma(c) null mice with polyclonal alphabeta T cells, but not with alphabeta T cells from IFN-gamma null , S. flexneri infection could be subsequently controlled. Rag null mice devoid of B and T cells but harboring NK cells could control infection. Local IFN-gamma production by T and NK cells recruited to the lung was demonstrated in S. flexneri-infected wt mice. These data demonstrate that both alphabeta T cells and NK cells contribute to the early control of S. flexneri infection through amplification of an inflammatory response. This cellular lymphocyte redundancy assures IFN-gamma production, which is central to innate immunity against Shigella infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号