首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   36篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   16篇
  2014年   13篇
  2013年   21篇
  2012年   20篇
  2011年   26篇
  2010年   17篇
  2009年   20篇
  2008年   19篇
  2007年   16篇
  2006年   18篇
  2005年   21篇
  2004年   20篇
  2003年   22篇
  2002年   18篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
61.
The arbuscular mycorrhizal (AM) symbiosis belongs to the strategies plants have developed to cope with adverse environmental conditions including contamination by heavy metals such as cadmium (Cd). In the present work, we report on the protective effect conferred by AM symbiosis to the model legume Medicago truncatula grown in presence of Cd, and on the 2‐D‐based proteomic approach further used to compare the proteomes of M. truncatula roots either colonised or not with the AM fungus Glomus intraradices in Cd‐free and Cd‐contaminated substrates. The results indicated that at the proteome level, 9 out of the 15 cadmium‐induced changes in nonmycorrhizal roots were absent or inverse in those Cd‐treated and colonized by G. intraradices, including the G. intraradices‐dependent down‐accumulation of Cd stress‐responsive proteins. Out of the twenty‐six mycorrhiza‐related proteins that were identified, only six displayed changes in abundance upon Cd exposure, suggesting that part of the symbiotic program, which displays low sensitivity to Cd, may be recruited to counteract Cd toxicity through the mycorrhiza‐dependent synthesis of proteins having functions putatively involved in alleviating oxidative damages, including a cyclophilin, a guanine nucleotide‐binding protein, an ubiquitin carboxyl‐terminal hydrolase, a thiazole biosynthetic enzyme, an annexin, a glutathione S‐transferase (GST)‐like protein, and a S‐adenosylmethionine (SAM) synthase.  相似文献   
62.
63.
Body water is a major element of the cold-hardiness strategies observed in ectothermic animals, in particular in freezing avoidant species for which body ice formation is lethal. Here, we investigate the relationships, in terrestrial snails, between the temperature of crystallisation (Tc) and body water (water mass and water content), shell shape, geographic and climatic distribution, taking into account phylogenetic inertia. Phylogenetic relationships among 31 species from 13 different families of terrestrial Gastropods were studied using 28S rRNA nuclear and COI mitochondrial sequence data, together with species-specific traits. Our results provide evidence for clear relationships between Tc and absolute/relative body water: smaller species with lower water content tended to be characterized by colder temperatures of crystallisation, although some exceptions were noticeable. Environmental conditions do not appear to affect Tc significantly, as well as shell shape which is however correlated with water content. This study confirmed that supercooling ability in land snails is size-constrained, with consequences on cold-hardiness strategies.  相似文献   
64.
65.
Dispersal decisions are often condition-dependent, influenced by the interaction of individual phenotype and environmental conditions. Terrestrial Gastropods are simultaneous hermaphrodites, a reproductive system rarely studied in the context of dispersal. Moreover, the energetic cost of their movement is one of the highest among animals. Despite these features, which make them valuable models to understand the trade-offs between dispersal and other life-history traits, their dispersal strategies have been barely explored. We studied the movements of subadults and adults of the brown garden snail Cornu aspersum in a semi-natural 4-patch network, for 2 months in 2011 (a dry year) and 1 month in 2012 (a wet year). We assessed the effects of life-history stage (subadult/adult) and weather conditions on dispersal propensity and dispersal speed. Snails were more mobile under humid and warm weather, but nearly all individuals left patches when the relative humidity was close to 100 % in 2012. Because such humidity levels are potentially lethal to C. aspersum, we argue these extreme emigration rates might be an emergency escape response to harmful conditions. Despite a theoretically higher cost of movement, we found that subadults emigrated more, and dispersed faster and further, than adults. Thus, and contrary to what was expected, direct costs of movement do not play the main role in shaping dispersal in C. aspersum. Observed differences between subadults and adults in dispersal behaviour are discussed in the context of intraspecific competition, inbreeding avoidance and relative costs of male and female reproduction.  相似文献   
66.
Eukaryotic cells compartmentalize their internal milieu in order to achieve specific reactions in time and space. This organization in distinct compartments is essential to allow subcellular processing of regulatory signals and generate specific cellular responses. In the nucleus, genetic information is packaged in the form of chromatin, an organized and repeated nucleoprotein structure that is a source of epigenetic information. In addition, cells organize the distribution of macromolecules via various membrane-less nuclear organelles, which have gathered considerable attention in the last few years. The macromolecular multiprotein complexes known as Promyelocytic Leukemia Nuclear Bodies (PML NBs) are an archetype for nuclear membrane-less organelles. Chromatin interactions with nuclear bodies are important to regulate genome function. In this review, we will focus on the dynamic interplay between PML NBs and chromatin. We report how the structure and formation of PML NBs, which may involve phase separation mechanisms, might impact their functions in the regulation of chromatin dynamics. In particular, we will discuss how PML NBs participate in the chromatinization of viral genomes, as well as in the control of specific cellular chromatin assembly pathways which govern physiological mechanisms such as senescence or telomere maintenance.  相似文献   
67.
68.
69.
The initiation of eukaryotic DNA replication is a highly regulated process conserved from yeast to human. The past decade has seen significant advances in understanding how the CMG (Cdc45‐MCM‐GINS) replicative helicase is loaded onto DNA. However, very little was known on how this complex is removed from chromatin at the end of S phase. Two papers in a recent issue of Science 1 2 show that in yeast and in Xenopus, the CMG complex is unloaded at replication termination sites by an active mechanism involving the polyubiquitylation of Mcm7.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号