首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   6篇
  82篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   14篇
  2011年   5篇
  2010年   7篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有82条查询结果,搜索用时 0 毫秒
61.
62.
63.

Background

Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact.

Methodology/Principal findings

To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites.

Conclusion/Significance

This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions.  相似文献   
64.
65.
66.
67.
Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding β-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the β-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the β-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.  相似文献   
68.
Five chromatographically distinct apurinic endonucleases (D1, D2, D3, D4, and E) were purified from Saccharomyces cerevisiae 234, 122, 1,000, 4,550, and 5,490-fold, respectively. All appeared to be class II apurinic endonucleases and were not contaminated with exonuclease or nonspecific endonuclease activities under the reaction conditions used. All had similar pH optima, but endonucleases D4 and E showed higher salt requirements and endonuclease D4 had a lower Mg2+ requirement for optimal activity than the other endonucleases. Endonuclease D4 also nicked OsO4-treated DNA. The molecular weights of the apurinic endonucleases as determined by glycerol gradient sedimentation analysis were 37,000, 49,000, and 10,000, for endonucleases E, D4, and D2, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples of radioiodinated endonuclease E showed the presence of two proteins.  相似文献   
69.
Root respiration at the level of a forest stand, an important component of ecosystem carbon balance, has been estimated in the past using various methods, most of them being indirect and relying on soil respiration measurements. On a 3-yr-old Eucalyptus stand in Congo-Brazzaville, a method involving the upscaling of direct measurements made on roots in situ, was compared with an independent approach using soil respiration measurements conducted on control and trenched plots (i.e. without living roots). The first estimation was based on the knowledge of root-diameter distribution and on a relationship between root diameter and specific respiration rates. The direct technique involving the upscaling of direct measurements on roots resulted in an estimation of 1.53 micromol m(-2) s(-1), c. 50% higher than the mean estimation obtained with the indirect technique (1.05 micromol m(-2) s(-1)). Monte-Carlo simulations showed that the results carried high uncertainty, but this uncertainty was no higher for the direct method than for the trenched-plot method. The reduction of the uncertainties on upscaled results requires more extensive knowledge of temperature sensitivity and more confidence and precision on the respiration rates and biomasses of fine roots.  相似文献   
70.
Proximity labeling provides a powerful in vivo tool to characterize the proteome of subcellular structures and the interactome of specific proteins. The nematode Caenorhabditis elegans is one of the most intensely studied organisms in biology, offering many advantages for biochemistry. Using the highly active biotin ligase TurboID, we optimize here a proximity labeling protocol for C. elegans. An advantage of TurboID is that biotin''s high affinity for streptavidin means biotin-labeled proteins can be affinity-purified under harsh denaturing conditions. By combining extensive sonication with aggressive denaturation using SDS and urea, we achieved near-complete solubilization of worm proteins. We then used this protocol to characterize the proteomes of the worm gut, muscle, skin, and nervous system. Neurons are among the smallest C. elegans cells. To probe the method''s sensitivity, we expressed TurboID exclusively in the two AFD neurons and showed that the protocol could identify known and previously unknown proteins expressed selectively in AFD. The active zones of synapses are composed of a protein matrix that is difficult to solubilize and purify. To test if our protocol could solubilize active zone proteins, we knocked TurboID into the endogenous elks-1 gene, which encodes a presynaptic active zone protein. We identified many known ELKS-1-interacting active zone proteins, as well as previously uncharacterized synaptic proteins. Versatile vectors and the inherent advantages of using C. elegans, including fast growth and the ability to rapidly make and functionally test knock-ins, make proximity labeling a valuable addition to the armory of this model organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号