首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   85篇
  国内免费   1篇
  2023年   5篇
  2022年   20篇
  2021年   41篇
  2020年   16篇
  2019年   24篇
  2018年   26篇
  2017年   31篇
  2016年   44篇
  2015年   82篇
  2014年   83篇
  2013年   81篇
  2012年   114篇
  2011年   96篇
  2010年   64篇
  2009年   64篇
  2008年   68篇
  2007年   86篇
  2006年   76篇
  2005年   66篇
  2004年   47篇
  2003年   62篇
  2002年   39篇
  2001年   10篇
  2000年   5篇
  1999年   13篇
  1998年   8篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1993年   7篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1988年   4篇
  1986年   3篇
  1984年   4篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1969年   4篇
  1968年   4篇
  1967年   3篇
  1966年   4篇
  1965年   4篇
  1951年   2篇
排序方式: 共有1404条查询结果,搜索用时 156 毫秒
121.
Lipotoxicity is a key mechanism thought to be responsible for the progression of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). Noninvasive diagnosis of NASH is a major unmet clinical need, and we hypothesized that PUFA metabolites, in particular arachidonic acid (AA)-derived eicosanoids, in plasma would differentiate patients with NAFL from those with NASH. Therefore, we aimed to assess the differences in the plasma eicosanoid lipidomic profile between patients with biopsy-proven NAFL versus NASH versus normal controls without nonalcoholic fatty liver disease (NAFLD; based on MRI fat fraction <5%). We carried out a cross-sectional analysis of a prospective nested case-control study including 10 patients with biopsy-proven NAFL, 9 patients with biopsy-proven NASH, and 10 non-NAFLD MRI-phenotyped normal controls. We quantitatively compared plasma eicosanoid and other PUFA metabolite levels between NAFL versus NASH versus normal controls. Utilizing a uniquely well-characterized cohort, we demonstrated that plasma eicosanoid and other PUFA metabolite profiling can differentiate between NAFL and NASH. The top candidate as a single biomarker for differentiating NAFL from NASH was 11,12-dihydroxy-eicosatrienoic acid (11,12-diHETrE) with an area under the receiver operating characteristic curve (AUROC) of 1. In addition, we also found a panel including 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2) and 20-carboxy arachidonic acid (20-COOH AA) that demonstrated an AUROC of 1. This proof-of-concept study provides early evidence that 11,12-diHETrE, dhk PGD2, and 20-COOH AA are the leading eicosanoid candidate biomarkers for the noninvasive diagnosis of NASH.  相似文献   
122.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   

123.
124.
125.
Introduction – The cobalt is an essential element for leguminous plants but may be harmful for other species; for that reason determination of Co(II) is very important for the management of polluted areas and for discover plants with capacity for the hyperaccumulation of heavy metals, which has produced a growing necessity of fast, sensitive and selective analytical techniques. Objective – To develop an analytical procedure for the determination of cobalt in plant tissue by coupling the ionic chromatography to the luminol‐based chemiluminescence detection. Methodology – The sample was digested in a mixture of concentrated nitric acid and hydrogen peroxide, using an microwave oven to dissolve the Co(II). The solution containing Co(II) ions was injected to an ionic chromatograph using oxalic acid as the eluent. The detection was based on the catalytic effect of Co(II) on the luminol chemiluminescence using perborate or percarbonate as oxidants. Experimental variables, such as concentrations, pH, flow rates and acid digestion conditions were optimised. Results – Well‐resolved chromatographic peaks were obtained. The height and area showed linear dependences with the Co(II) concentration, which were used to quantify the heavy metal, with recoveries up to 95%. The microwave irradiation (60 s) was sufficient for the complete mineralisation of 200 mg of sample, employing 2 mL of the acid mixture. The method was free from the interferences, requiring less than 12 minutes to complete the analysis. Conclusion – The method was simple and rapid for the determination of cobalt in plant tissue with detection limits comparable to those obtained with more sophisticated and expensive analytical equipments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
126.
A novel downstream bioprocess was developed to obtain purified plasmid DNA (pDNA) from Escherichia coli ferments. The intermediate recovery and purification of the pDNA in cell lysate was conducted using hollow-fiber tangential filtration and frontal anion-exchange membrane and elution hydrophobic chromatographies. The purity of the solutions of pDNA obtained during each process stage was investigated. The results show that the pDNA solution purity increased 30-fold and more than 99% of RNA in the lysate was removed during the process operations. The combination of membrane operations and hydrophobic interaction chromatography resulted in an efficient way to recover pDNA from cell lysates. A better understanding of membrane-based technology for the purification of pDNA from clarified E. coli lysate was developed in this research.  相似文献   
127.
Treatment of diseases such as African sleeping sickness and leishmaniasis often depends on relatively expensive or toxic drugs, and resistance to current chemotherapeutics is an issue in treating these diseases and malaria. In this study, a new semi-synthetic berberine analogue, 5,6-didehydro-8,8-diethyl-13-oxodihydroberberine chloride (1), showed nanomolar level potency against in vitro models of leishmaniasis, malaria, and trypanosomiasis as well as activity in an in vivo visceral leishmaniasis model. Since the synthetic starting material, berberine hemisulfate, is inexpensive, 8,8-dialkyl-substituted analogues of berberine may lead to a new class of affordable antiprotozoal compounds.  相似文献   
128.
Silybin is the major flavonolignan of silymarin and it displays a plethora of biological effects, generally ascribed to its antioxidant properties. Herein we shall describe an efficient synthetic strategy to obtain a variety of new and more water-soluble silybin and 2,3-dehydrosilybin (DHS) derivatives in which the 23-hydroxyl group was converted to a sulfate, phosphodiester, or amine group, using a solution-phase approach. Furthermore a new and efficient method for the preparation of DHS from silybin was developed and optimised.The antioxidant properties of the new compounds were evaluated in a cellular model in vivo and they displayed an antioxidant activity comparable to or higher than silybin and DHS, being able to prevent H2O2-induced generation of intracellular reactive oxygen species (ROS). Most of the derivatives also displayed a better hydrophilicity while retaining the biological activities of silybin and they might broaden the in vivo applications of this class of natural compounds.  相似文献   
129.
Biocellulose (BC) is a highly pure form of cellulose, produced in the form of a swollen membrane, with several applications in the biomedical area. In this study, the behavior of BC membranes as systems for topical delivery of lidocaine was evaluated. The BC-lidocaine membranes were prepared and characterized in terms of structural and morphological properties. A uniform distribution of the drug inside the BC membranes was observed. In vitro diffusion studies with Franz cells were conducted using human epidermal membranes and showed that the permeation rate of the drug in BC membranes was slightly slower than that obtained with the conventional systems, which was attributed to the establishment of interactions between the lidocaine molecules and the BC membrane, as evidenced by FTIR and NMR analysis. These results indicate that this methodology can be successfully applied for the dermal administration of lidocaine regarding the release profile and ease of application.  相似文献   
130.
The proposal in this study was to evaluate the physical properties of different biopolymers films. The materials used were: pectin, carboxyl methylcellulose, methylcellulose, hydroxyl propylcellulose, hydroxypropyl-methylcellulose, and corn waxy starch; from these polysaccharides aqueous dispersions were prepared to 3% (w/v) for obtained films. In these biopolymer films, the thermal diffusivities (α) was evaluated by the Open Photoacoustic Cell method; also, their mechanical properties as tensile strength, elongation, and Young’s modulus were measured, their crystallinity percentage was evaluated by X-ray diffraction and microstructure through atomic force microscopy in contact mode. From the polysaccharide films, it was observed that most of them were flexible and transparent. In the case of the films, mechanical properties were found that the highest value of tensile strength and Young’s modulus corresponded to carboxyl methylcellulose with 69.17 and 1,912.20 MPa values, respectively. Also, Open Photoacoustic Cell method and X-ray diffraction measurements showed that there exist a correlation between the thermal diffusivity values and the crystallinity measured in the biopolymer films. It was also observed that α values of cellulose derived was affected by the substitution group in the molecule, reaching the highest α value, the films of carboxyl methylcellulose. Regarding the microstructural of the films, starch showed the highest roughness value (88.6 nm) whereas hydroxypropyl-methylcellulose resulted with the lowest roughness value (7.67 nm).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号