全文获取类型
收费全文 | 2764篇 |
免费 | 299篇 |
国内免费 | 1篇 |
专业分类
3064篇 |
出版年
2023年 | 12篇 |
2021年 | 26篇 |
2020年 | 19篇 |
2019年 | 29篇 |
2018年 | 35篇 |
2017年 | 26篇 |
2016年 | 48篇 |
2015年 | 70篇 |
2014年 | 82篇 |
2013年 | 127篇 |
2012年 | 180篇 |
2011年 | 172篇 |
2010年 | 90篇 |
2009年 | 102篇 |
2008年 | 140篇 |
2007年 | 156篇 |
2006年 | 162篇 |
2005年 | 154篇 |
2004年 | 176篇 |
2003年 | 132篇 |
2002年 | 135篇 |
2001年 | 45篇 |
2000年 | 41篇 |
1999年 | 52篇 |
1998年 | 49篇 |
1997年 | 41篇 |
1996年 | 40篇 |
1995年 | 38篇 |
1994年 | 25篇 |
1993年 | 31篇 |
1992年 | 41篇 |
1991年 | 29篇 |
1990年 | 26篇 |
1989年 | 39篇 |
1988年 | 40篇 |
1987年 | 38篇 |
1986年 | 27篇 |
1985年 | 33篇 |
1984年 | 22篇 |
1983年 | 19篇 |
1982年 | 31篇 |
1981年 | 29篇 |
1980年 | 21篇 |
1979年 | 27篇 |
1978年 | 19篇 |
1976年 | 12篇 |
1975年 | 18篇 |
1974年 | 12篇 |
1973年 | 14篇 |
1972年 | 15篇 |
排序方式: 共有3064条查询结果,搜索用时 15 毫秒
991.
Genome-wide analysis of the core DNA replication machinery in the higher plants Arabidopsis and rice 下载免费PDF全文
Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants. 相似文献
992.
993.
Tamashiro KL Nguyen MM Ostrander MM Gardner SR Ma LY Woods SC Sakai RR 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(5):R1864-R1874
Social stress resulting from dominant-subordinate relationships is associated with body weight loss and altered body composition in subordinate (SUB) male rats. Here, we extend these findings to determine whether stress-induced changes in energy homeostasis persist when the social stress is removed, and the animal is allowed to recover. We examined body weight (BW), body composition, and relevant endocrine measures after one or two cycles of 14 days of social stress, each followed by 21 days of recovery in each rat's individual home cage. SUB lost significantly more BW during social housing in a visible burrow system (VBS) compared with dominant (DOM) animals. Weight loss during social stress was attributable to a decrease in adipose tissue in DOM and SUB, with an additional loss of lean tissue in SUB. During both 21-day recovery periods, DOM and SUB regained lost BW, but only SUB were hyperphagic. Following recovery, SUB had a relatively larger increase in adipose tissue and plasma leptin compared with DOM, indicating that body composition changes were dependent on social status. Control animals that were weight matched to SUB or male rats exposed to the VBS environment without females, and that did not form a social hierarchy, did not exhibit changes in body composition like SUB in the VBS. Therefore, chronic social stress causes social status-dependent changes in BW, composition and endocrine measures that persist after repeated stress and recovery cycles and that may ultimately lead to metabolic disorders and obesity. 相似文献
994.
Platt MO Ankeny RF Shi GP Weiss D Vega JD Taylor WR Jo H 《American journal of physiology. Heart and circulatory physiology》2007,292(3):H1479-H1486
Cathepsins, the lysosomal cysteine proteases, are involved in vascular remodeling and atherosclerosis. Genetic knockout of cathepsins S and K in mice has shown to reduce atherosclerosis, although the molecular mechanisms remain unclear. Because atherosclerosis preferentially occurs in arteries exposed to disturbed flow conditions, we hypothesized that shear stress would regulate cathepsin K expression and activity in endothelial cells. Mouse aortic endothelial cells (MAEC) exposed to proatherogenic oscillatory shear (OS, +/- 5 dyn/cm(2) for 1 day) showed significantly higher cathepsin K expression and activity than that of atheroprotective, unidirectional laminar shear stress (LS, 15 dyn/cm(2) for 1 day). Western blot and active-site labeling studies showed an active, mature form of cathepsin K in the conditioned medium of MAEC exposed to OS but not in that of LS. Functionally, MAEC exposed to OS significantly increased elastase and gelatinase activity above that of LS. The OS-dependent elastase and gelatinase activities were significantly reduced by knocking down cathepsin K with small-interfering (si) RNA, but not by a nonsilencing siRNA control, suggesting that cathepsin K is a shear-sensitive protease. In addition, immunohistochemical analysis of atherosclerotic human coronary arteries showed a positive correlation between the cathepsin K expression levels in endothelium and elastic lamina integrity. These findings suggest that cathepsin K is a mechanosensitive, extracellular matrix protease that, in turn, may be involved in arterial wall remodeling and atherosclerosis. 相似文献
995.
Vellend M Harmon LJ Lockwood JL Mayfield MM Hughes AR Wares JP Sax DF 《Trends in ecology & evolution》2007,22(9):481-488
Exotic species invasions create almost ideal conditions for promoting evolutionary diversification: establishment of allopatric populations in new environmental conditions; altered ecological opportunities for native species; and new opportunities for hybridization between previously allopatric taxa. Here, we review recent studies of the evolutionary consequences of species invasions, revealing abundant and widespread examples of exotic species promoting evolutionary diversification via increased genetic differentiation among populations of both exotic and native species and the creation of new hybrid lineages. Our review indicates that, although the well-documented reductions to biodiversity caused by exotic species might outweigh the increases resulting from diversification, a complete understanding of the net effects of exotic species on biodiversity in the long term will require consideration of both. 相似文献
996.
Although the chloroplast genome contains many noncoding regions, relatively few have been exploited for interspecific phylogenetic and intraspecific phylogeographic studies. In our recent evaluation of the phylogenetic utility of 21 noncoding chloroplast regions, we found the most widely used noncoding regions are among the least variable, but the more variable regions have rarely been employed. That study led us to conclude that there may be unexplored regions of the chloroplast genome that have even higher relative levels of variability. To explore the potential variability of previously unexplored regions, we compared three pairs of single-copy chloroplast genome sequences in three disparate angiosperm lineages: Atropa vs. Nicotiana (asterids); Lotus vs. Medicago (rosids); and Saccharum vs. Oryza (monocots). These three separate sequence alignments highlighted 13 mutational hotspots that may be more variable than the best regions of our former study. These 13 regions were then selected for a more detailed analysis. Here we show that nine of these newly explored regions (rpl32-trnL((UAG)), trnQ((UUG))-5'rps16, 3'trnV((UAC))-ndhC, ndhF-rpl32, psbD-trnT((GGU)), psbJ-petA, 3'rps16-5'trnK((UUU)), atpI-atpH, and petL-psbE) offer levels of variation better than the best regions identified in our earlier study and are therefore likely to be the best choices for molecular studies at low taxonomic levels. 相似文献
997.
Tan Z Randall G Fan J Camoretti-Mercado B Brockman-Schneider R Pan L Solway J Gern JE Lemanske RF Nicolae D Ober C 《American journal of human genetics》2007,81(4):829-834
HLA-G is a nonclassic, class I HLA molecule that has important immunomodulatory properties. Previously, we identified HLA-G as an asthma-susceptibility gene and discovered that the risk of asthma in a child was determined by both the child's HLA-G genotype and the mother's affection status. Here we report a SNP in the 3' untranslated region of HLA-G that influences the targeting of three microRNAs (miRNAs) to this gene, and we suggest that allele-specific targeting of these miRNAs accounts, at least in part, for our earlier observations on HLA-G and the risk of asthma. 相似文献
998.
Heat stress-induced apoptosis in porcine in vitro fertilized and parthenogenetic preimplantation-stage embryos 总被引:1,自引:0,他引:1
Decades worth of research have consistently shown the adverse effects of elevated temperatures on reproductive parameters of livestock species. The objective of this study was to evaluate the developmental and apoptotic responses of porcine in vitro fertilized (IVF) and parthenogenetically activated (PA) embryos heat stressed at the late 1-cell stage. Embryos were heat stressed (HS) at 42 degrees C for 9 hr starting 22 hr after insemination or artificial activation stimulus. Non heat-stressed (NHS) control embryos were maintained at 39 degrees C for the duration of the experiments. TUNEL staining on Day 5 of development demonstrated that heat stress elicited a significant apoptotic response in IVF embryos (45.6% of HS embryos and 26.7% of NHS embryos were apoptotic; P<0.05), but not in PA embryos (51.1% and 39.9% for HS and NHS embryos, respectively; P>0.1). And, while IVF embryos were highly susceptible to heat-induced developmental perturbations (20.6% and 8.8% development to blastocyst for NHS and HS embryos, respectively; P<0.05), elevated temperatures did not affect blastocyst rates in PA embryos (22.2% for NHS PA embryos and 21.2% for HS PA embryos; P>0.1). These findings indicate that, as in other systems studied, IVF pig embryos are directly affected adversely by heat stress conditions. Parthenogenetic embryos, though, appear to be surprisingly tolerant of the elevated temperatures. The differences between IVF and PA embryos in their response to heat stress warrants further investigation. 相似文献
999.
McGinley C Jensen RL Byrne CA Shafat A 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(2):621-627
The purpose of this study was to examine the early-phase adaptations of traditional dynamic constant external resistance (DCER) training vs. a portable upper-body training device (Fortex). The Fortex is a concentric training device based on air resistance. Contractions using this device are slow (1.5-3 s) and have a limited range of motion. The exercises potentially allow maximal muscle action during each contraction. Healthy, sedentary men (n = 30) were assigned to begin either 8 weeks of weight training (W, n = 12) or 8 weeks of Fortex training (F, n = 9), and were compared with a control group (C, n = 9). Exercises were chosen for the W group that would train similar muscle groups and contain a similar volume of repetitions as the F group. However, movement patterns and force curves were not identical. Increases in the upper-arm cross-sectional area were not detected in any of the groups. Both training groups showed strength gains in the various strength tests that were distinct from each other. Our results indicate that both Fortex and DCER training proved effective in eliciting strength gains in sedentary men over an 8-week training period. There are, however, limitations with the Fortex in terms of progression needs and training asymmetry that indicate it should be used as a complement to other training. 相似文献
1000.
Randall B. Widelitz Gee-Way Lin Yung-Chih Lai Julie A. Mayer Pin-Chi Tang Hsu-Chen Cheng Ting-Xin Jiang Chih-Feng Chen Cheng-Ming Chuong 《Development, growth & differentiation》2019,61(1):124-138
Many animals can change the size, shape, texture and color of their regenerated coats in response to different ages, sexes, or seasonal environmental changes. Here, we propose that the feather core branching morphogenesis module can be regulated by sex hormones or other environmental factors to change feather forms, textures or colors, thus generating a large spectrum of complexity for adaptation. We use sexual dimorphisms of the chicken to explore the role of hormones. A long-standing question is whether the sex-dependent feather morphologies are autonomously controlled by the male or female cell types, or extrinsically controlled and reversible. We have recently identified core feather branching molecular modules which control the anterior-posterior (bone morphogenetic orotein [BMP], Wnt gradient), medio-lateral (Retinoic signaling, Gremlin), and proximo-distal (Sprouty, BMP) patterning of feathers. We hypothesize that morpho-regulation, through quantitative modulation of existing parameters, can act on core branching modules to topologically tune the dimension of each parameter during morphogenesis and regeneration. Here, we explore the involvement of hormones in generating sexual dimorphisms using exogenously delivered hormones. Our strategy is to mimic male androgen levels by applying exogenous dihydrotestosterone and aromatase inhibitors to adult females and to mimic female estradiol levels by injecting exogenous estradiol to adult males. We also examine differentially expressed genes in the feathers of wildtype male and female chickens to identify potential downstream modifiers of feather morphogenesis. The data show male and female feather morphology and their color patterns can be modified extrinsically through molting and resetting the stem cell niche during regeneration. 相似文献