首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4572篇
  免费   455篇
  5027篇
  2024年   3篇
  2023年   32篇
  2022年   73篇
  2021年   157篇
  2020年   78篇
  2019年   92篇
  2018年   110篇
  2017年   116篇
  2016年   161篇
  2015年   284篇
  2014年   330篇
  2013年   321篇
  2012年   429篇
  2011年   392篇
  2010年   246篇
  2009年   207篇
  2008年   312篇
  2007年   260篇
  2006年   269篇
  2005年   242篇
  2004年   236篇
  2003年   181篇
  2002年   206篇
  2001年   43篇
  2000年   19篇
  1999年   30篇
  1998年   25篇
  1997年   23篇
  1996年   26篇
  1995年   14篇
  1994年   15篇
  1993年   19篇
  1992年   7篇
  1991年   13篇
  1990年   11篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1954年   1篇
排序方式: 共有5027条查询结果,搜索用时 15 毫秒
1.
2.
3.
Hickey, Matthew S., Charles J. Tanner, D. Sean O'Neill,Lydia J. Morgan, G. Lynis Dohm, and Joseph A. Houmard. Insulin activation of phosphatidylinositol 3-kinase in human skeletal muscle invivo. J. Appl. Physiol. 83(3):718-722, 1997.The purpose of this investigation was to determinewhether insulin-stimulated phosphatidylinositol 3-kinase (PI3-kinase)activity is detectable in needle biopsies of human skeletal muscle.Sixteen healthy nonobese males matched for age, percent fat, fastinginsulin, and fasting glucose participated in one of two experimentalprotocols. During an intravenous glucose tolerance test (IVGTT)protocol, insulin-stimulated PI3-kinase activity was determined frompercutaneous needle biopsies at 2, 5, and 15 min post-insulinadministration (0.025 U/kg). In the second group, a 2-h, 100 mU · m2 · min1euglycemic hyperinsulinemic clamp was performed, and biopsies wereobtained at 15, 60, and 120 min after insulin infusion was begun.Insulin stimulated PI3-kinase activity by 1.6 ± 0.2-, 2.2 ± 0.3-, and 2.2 ± 0.4-fold at 2, 5, and 15 min, respectively, duringthe IVGTT. During the clamp protocol, PI3-kinase was elevated by 5.3 ± 1.3-, 8.0 ± 2.6-, and 2.7 ± 1.4-fold abovebasal at 15, 60, and 120 min, respectively. Insulin-stimulatedPI3-kinase activity at 15 min post-insulin administration wassignificantly greater during the clamp protocol vs. the IVGTT(P < 0.05). These observations suggest that insulin-stimulated PI3-kinase activity is detectable inneedle biopsies of human skeletal muscle, and furthermore, that theeuglycemic, hyperinsulinemic clamp protocol may be a useful tool toassess insulin signaling in vivo.

  相似文献   
4.
During meiosis, chromosomes undergo dramatic changes in structural organization, nuclear positioning, and motion. Although the nuclear pore complex has been shown to affect genome organization and function in vegetative cells, its role in meiotic chromosome dynamics has remained largely unexplored. Recent work in the budding yeast Saccharomyces cerevisiae demonstrated that the mobile nucleoporin Nup2 is required for normal progression through meiosis I prophase and sporulation in strains where telomere-led chromosome movement has been compromised. The meiotic-autonomous region, a short fragment of Nup2 responsible for its role in meiosis, was shown to localize to the nuclear envelope via Nup60 and to bind to meiotic chromosomes. To understand the relative contribution these 2 activities have on meiotic-autonomous region function, we first carried out a screen for meiotic-autonomous region mutants defective in sporulation and found that all the mutations disrupt interaction with both Nup60 and meiotic chromosomes. Moreover, nup60 mutants phenocopy nup2 mutants, exhibiting similar nuclear division kinetics, sporulation efficiencies, and genetic interactions with mutations that affect the telomere bouquet. Although full-length Nup60 requires Nup2 for function, removal of Nup60’s C-terminus allows Nup60 to bind meiotic chromosomes and promotes sporulation without Nup2. In contrast, binding of the meiotic-autonomous region to meiotic chromosomes is completely dependent on Nup60. Our findings uncover an inhibitory function for the Nup60 C-terminus and suggest that Nup60 mediates recruitment of meiotic chromosomes to the nuclear envelope, while Nup2 plays a secondary role counteracting the inhibitory function in Nup60’s C-terminus.  相似文献   
5.
The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H2O2 (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P = 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P < 0.001) and H2O2 (P < 0.01), unexpectedly, exogenous gliotoxin relieved H2O2-induced growth inhibition in a dose-dependent manner (0 to 10 μg/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P < 0.05) the growth of the ΔgliK26933 deletion mutant. The A. fumigatus ΔgliK26933 mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus ΔgliK26933 mutant than in those of the wild type (P = 0.0024 [fold difference, 24] and P = 0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus ΔgliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus ΔgliK26933 mutant compared to the wild type (P < 0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P = 0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the ΔgliK46645 mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus.  相似文献   
6.
Tissue culture medium is often overlooked as a factor in plant biotechnology. Most work uses Murashige and Skoog (MS; Physiol Plant in 15:473–497, 1962) inorganic medium formulation, which is not likely optimal for many of the plant systems where it is used. This current study of macronutrient factors simultaneously altered media volume and amount of tissue (plants per vessel), sucrose, nitrogen (as NO3 and NH4+ ions), and K+ in a d-optimal design space with only 55 experimental units (including five true replicates). Meso- and micro-nutrient concentrations were lowered (5% of MS) to determine which elements were most critical to plantlet quality. Plantlet quality was quantified by multiplication in the laboratory and survival and growth in the greenhouse. Plantlets grown at the lowest plant density, the lowest macronutrient concentration (20 mM), and equi-molar proportions of NH4+/K+ resulted in the best multiplication ratio and 100% greenhouse survival. Multiplication ratio in vitro and survival in the greenhouse were well correlated with one another. Laboratory dry mass, media use, sucrose use, and the uptake of the macronutrients NO3, NH4+, and K+ were not well correlated with plantlet quality. Plantlets with the greatest uptake of P, Ca, Mg, and Mn had the best multiplication in the laboratory and on subsequent transfer, acclimatized and grew fastest in the greenhouse. Phosphorus was shown to be most depleted in media. This work demonstrates a platform to simultaneously optimize several nutritive components of tissue culture media to produce plantlets that perform well in both laboratory and greenhouse environments. Plant quality was related with factors outside the macronutrient design, and this platform indicated where to expand the experimental space. Fixed, flat-screen presentations revealed less of the response surface than interactive profiles driven by the reader.  相似文献   
7.
8.
P450cin (CYP176A) is a rare bacterial P450 in that contains an asparagine (Asn242) instead of the conserved threonine that almost all other P450s possess that directs oxygen activation by the heme prosthetic group. However, P450cin does have the neighbouring, conserved acid (Asp241) that is thought to be involved indirectly in the protonation of the dioxygen and affect the lifetime of the ferric-peroxo species produced during oxygen activation. In this study, the P450cin D241N mutant has been produced and found to be analogous to the P450cam D251N mutant. P450cin catalyses the hydroxylation of cineole to give only (1R)-6β-hydroxycineole and is well coupled (NADPH consumed: product produced). The P450cin D241N mutant also hydroxylated cineole to produce only (1R)-6β-hydroxycineole, was moderately well coupled (31 ± 3%) but a significant reduction in the rate of the reaction (2% as compared to wild type) was observed. Catalytic oxidation of a variety of substrates by D241N P450cin were used to examine if typical reactions ascribed to the ferric-peroxo species increased as this intermediate is known to be more persistent in the P450cam D251N mutant. However, little change was observed in the product profiles of each of these substrates between wild type and mutant enzymes and no products consistent with chemistry of the ferric-peroxo species were observed to increase.  相似文献   
9.
The wolf spider, Pardosa milvina, reduces activity in the presence of chemical cues (silk and excreta) from a larger predatory wolf spider, Hogna helluo. Hogna is sexually dimorphic in body size and males and females differ in their propensity to attack prey. Consequently, each sex may present different levels of risk to Pardosa. We measured predation risk of Pardosa in the presence of male or female Hogna. We also assessed Pardosa antipredator responses and survival in the presence or absence of previously deposited chemical cues from male or female Hogna. In the absence of predator chemical cues, Pardosa survived significantly longer in the presence of male Hogna compared with female Hogna. We then assessed Pardosa survival in the presence of chemical cues from each Hogna sex by placing Pardosa in containers previously occupied by a female Hogna, a male Hogna, or no Hogna (control). We then introduced a female Hogna into each container and measured predation latency. Pardosa survived significantly longer in the presence of female and male cues compared with the control treatment. Median survival time of Pardosa was over four times longer on substrates with female Hogna cues compared with male cues, but this difference was not statistically significant. We tested Pardosa activity levels in the presence of chemical cues from male or female Hogna. Both Hogna sexes were maintained in separate containers after which we placed an adult female Pardosa in one of the containers or a blank control container. Pardosa significantly decreased activity in the presence of chemical cues from either sex relative to the control. Activity was lowest on substrates with female Hogna cues, but not significantly lower than on substrates with male Hogna cues. Results suggest that chemical information from male or female Hogna significantly reduces Pardosa activity which results in increased survival.  相似文献   
10.
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号