首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   19篇
  138篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   14篇
  2005年   12篇
  2004年   10篇
  2003年   13篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1979年   2篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
111.
A sensitive and simple method for the quantification and for the detection of 2-chlorovinylarsonous (CVAA) and 2-chlorovinylarsonic (CVAOA) acids was developed. CVAA and CVOA are important biological markers in human and rat urine specific to lewisite (chlorovinylarsonous chloride compounds) exposure. The developed assay was based on the use of solid-phase extraction (SPE) followed by liquid-chromatography coupled to electrospray ionization (negative ion-mode) low-energy collision dissociation-tandem mass spectrometry (ESI-CID-MS/MS). The method demonstrated linearity over at least three orders of magnitude and had a detection limit (LOD) of 0.5 ng/ml for CVAA and 3 ng/ml for CVAOA. The relative standard deviations for the quality control samples ranged from 6 to 11%. Application of this procedure was demonstrated in the lewisite animals exposure model. Rats were exposed intravenously by no lethal doses of lewisite and markers levels in urine samples were analyzed for 21 days post-exposure.  相似文献   
112.
One of the factors limiting the performance of organic solar cells (OSCs) is their large energy losses (E loss) in the conversion from photons to electrons, typically believed to be around 0.6 eV and often higher than those of inorganic solar cells. In this work, a novel low band gap polymer PIDTT‐TID with a optical gap of 1.49 eV is synthesized and used as the donor combined with PC71BM in solar cells. These solar cells attain a good power conversion efficiency of 6.7% with a high open‐circuit voltage of 1.0 V, leading to the E loss as low as 0.49 eV. A systematic study indicates that the driving force in this donor and acceptor system is sufficient for charge generation with the low E loss. This work pushes the minimal E loss of OSCs down to 0.49 eV, approaching the values of some inorganic and hybrid solar cells. It indicates the potential for further enhancement of the performance of OSCs by improving their V oc since the E loss can be minimized.  相似文献   
113.
The effects of river restoration on hydromorphological conditions and variability are often documented immediately following the restoration, but rarely properly monitored in the long term. This study assesses outcomes of 20 restoration projects undertaken across central and northern Europe for a comprehensive set of hydromorphological parameters, quantified at both larger and smaller spatial scales. For each project, we compared a restored river section to an upstream degraded section. Ten pairs of large projects were contrasted to ten similar but less extensive projects, to address the importance of restoration extent for the success of each project. Overall, river restoration increased habitat diversity through changes in channel morphology. Our results indicated that restoration particularly improved macro- and mesohabitat diversity, but had a limited effect on microhabitat conditions, including the diversity of substrates. We found no significant difference in effects between large and small restoration projects. Our results reveal the need to assess hydromorphological parameters which reflect processes occurring at different spatial scales, including indicators of larger-scale hydromorphological processes such as bank erosion, to monitor restoration effects effectively and accurately. Additionally, our results demonstrate the importance of developing terrestrial parameters, to assess the lateral dimension of river restoration.  相似文献   
114.
An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18-25 culture filtrate. The CBH IIb demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobiohydrolases tested, including C. lucknowense CBH Ia, Ib, IIa, and Trichoderma reesei CBH I and II. Using purified C. lucknowense enzymes (CBH Ia, Ib, and IIb; endoglucanases II and V; beta-glucosidase, xylanase II), artificial multienzyme mixtures were reconstituted, displaying an extremely high performance in a conversion of different cellulosic substrates (Avicel, cotton, pretreated Douglas fir wood) to glucose. These mixtures were much or notably more effective in hydrolysis of the cellulosic substrates than the crude multienzyme C. lucknowense preparation and other crude cellulase samples produced by T. reesei and Penicillium verruculosum. Highly active cellulases are a key factor in bioconversion of plant lignocellulosic biomass to ethanol as an alternative to fossil fuels.  相似文献   
115.
For deep imaging of animal tissues, the optical window favorable for light penetration is in near-infrared wavelengths, which requires proteins with emission spectra in the far-red wavelengths. Here we report a far-red fluorescent protein, named Katushka, which is seven- to tenfold brighter compared to the spectrally close HcRed or mPlum, and is characterized by fast maturation as well as a high pH-stability and photostability. These unique characteristics make Katushka the protein of choice for visualization in living tissues. We demonstrate superiority of Katushka for whole-body imaging by direct comparison with other red and far-red fluorescent proteins. We also describe a monomeric version of Katushka, named mKate, which is characterized by high brightness and photostability, and should be an excellent fluorescent label for protein tagging in the far-red part of the spectrum.  相似文献   
116.
117.
The Flp site-specific recombinase is encoded by the 2 µm plasmid of Saccharomyces cerevisiae and is a member of the integrase family of recombinases. Like all members of the integrase family studied, Flp mediates recombination in two steps. First, a pair of strand exchanges creates a Holliday-like intermediate; second, this intermediate is resolved to recombinant products by a second pair of strand exchanges.
Evidence derived from experiments using linear substrates indicates that Flp's active site is composed of two Flp protomers. One binds to the Flp recognition target site (FRT site) and activates the scissile phosphodiester bond for cleavage. Another molecule of Flp bound elsewhere in the synaptic complex ( in trans ) donates the nucleophilic tyrosine that executes cleavage and thereby becomes covalently attached to the 3' phosphoryl group at the cleavage site.
It has previously been shown that Flp efficiently resolves synthetic, Holliday-like (χ) structures to linear products. In this paper, we examined whether resolution of χ structures by Flp also occurs via the trans cleavage mechanism. We used in vitro complementation studies of mutant Flp proteins as well as nicked χ structures to show that Flp resolves χ structures by trans cleavage. We propose a model for Flp-mediated recombination that incorporates trans cleavage at both the initial and resolution steps of strand exchange.  相似文献   
118.
119.
MOTIVATION: False discovery rate (FDR) is defined as the expected percentage of false positives among all the claimed positives. In practice, with the true FDR unknown, an estimated FDR can serve as a criterion to evaluate the performance of various statistical methods under the condition that the estimated FDR approximates the true FDR well, or at least, it does not improperly favor or disfavor any particular method. Permutation methods have become popular to estimate FDR in genomic studies. The purpose of this paper is 2-fold. First, we investigate theoretically and empirically whether the standard permutation-based FDR estimator is biased, and if so, whether the bias inappropriately favors or disfavors any method. Second, we propose a simple modification of the standard permutation to yield a better FDR estimator, which can in turn serve as a more fair criterion to evaluate various statistical methods. RESULTS: Both simulated and real data examples are used for illustration and comparison. Three commonly used test statistics, the sample mean, SAM statistic and Student's t-statistic, are considered. The results show that the standard permutation method overestimates FDR. The overestimation is the most severe for the sample mean statistic while the least for the t-statistic with the SAM-statistic lying between the two extremes, suggesting that one has to be cautious when using the standard permutation-based FDR estimates to evaluate various statistical methods. In addition, our proposed FDR estimation method is simple and outperforms the standard method.  相似文献   
120.
Histone H2AX is rapidly phosphorylated in the chromatin micro-environment surrounding a DNA double-strand break (DSB). Although H2AX deficiency is not detrimental to life, H2AX is required for the accumulation of numerous essential proteins into irradiation induced foci (IRIF). However, the relationship between IRIF formation, H2AX phosphorylation (gamma-H2AX) and the detection of DNA damage is unclear. Here, we show that the migration of repair and signalling proteins to DSBs is not abrogated in H2AX(-/-) cells, or in H2AX-deficient cells that have been reconstituted with H2AX mutants that eliminate phosphorylation. Despite their initial recruitment to DSBs, numerous factors, including Nbs1, 53BP1 and Brca1, subsequently fail to form IRIF. We propose that gamma-H2AX does not constitute the primary signal required for the redistribution of repair complexes to damaged chromatin, but may function to concentrate proteins in the vicinity of DNA lesions. The differential requirements for factor recruitment to DSBs and sequestration into IRIF may explain why essential regulatory pathways controlling the ability of cells to respond to DNA damage are not abolished in the absence of H2AX.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号