首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   24篇
  2024年   2篇
  2023年   7篇
  2022年   4篇
  2021年   19篇
  2020年   11篇
  2019年   20篇
  2018年   7篇
  2017年   11篇
  2016年   12篇
  2015年   20篇
  2014年   27篇
  2013年   23篇
  2012年   24篇
  2011年   24篇
  2010年   11篇
  2009年   12篇
  2008年   20篇
  2007年   13篇
  2006年   6篇
  2005年   6篇
  2004年   10篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
  1983年   1篇
  1979年   1篇
  1978年   3篇
  1975年   1篇
  1974年   3篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
71.
Thrombin and factor Xa, two important procoagulant enzymes, have been prime targets for regulation of clotting through the direct and indirect mechanism of inhibition. Our efforts on exploiting the indirect mechanism led us to study a carboxylic acid-based scaffold, which displayed major acceleration in the inhibition of these enzymes [J. Med. Chem.2005, 48, 1269, 5360]. This work advances the study to chemo-enzymatically prepared oligomers of 4-hydroxycinnamic acids, DHPs, which display interesting anticoagulant properties. Oligomers, ranging in size from tetramers to pentadecamers, were prepared through peroxidase-catalyzed oxidative coupling of caffeic, ferulic, and sinapic acids, and sulfated using triethylamine-sulfur trioxide complex. Chromatographic, spectroscopic, and elemental studies suggest that the DHPs are heterogeneous, polydisperse preparations composed of inter-monomer linkages similar to those found in natural lignins. Measurement of activated thromboplastin and prothrombin time indicates that both the sulfated and unsulfated derivatives of the DHPs display anticoagulant activity, which is dramatically higher than that of the reference polyacrylic acids. More interestingly, this activity approaches that of low-molecular-weight heparin with the sulfated derivative showing approximately 2- to 3-fold greater potency than the unsulfated parent. Studies on the inhibition of factor Xa and thrombin indicate that the oligomers exert their anticoagulant effect through both direct and indirect inhibition mechanisms. This dual inhibition property of 4-hydroxycinnamic acid-based DHP oligomers is the first example in inhibitors of coagulation. This work puts forward a novel, non-heparin structure, which may be exploited for the design of potent, dual action inhibitors of coagulation through combinatorial virtual screening on a library of DHP oligomers.  相似文献   
72.
Long non‐coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial‐associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2 gib005Δ8/+) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta‐b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2‐mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA‐mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.  相似文献   
73.
74.
Thapa A  Woo ER  Chi EY  Sharoar MG  Jin HG  Shin SY  Park IS 《Biochemistry》2011,50(13):2445-2455
Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of mono- and biflavonoids in Aβ42-induced toxicity and fibrillogenesis and find that the biflavonoid taiwaniaflavone (TF) effectively and specifically inhibits Aβ toxicity and fibrillogenesis. Compared to TF, the monoflavonoid apigenin (AP) is less effective and less specific. Our data show that differential effects of the mono- and biflavonoids in Aβ fibrillogenesis correlate with their varying cytoprotective efficacies. We also find that other biflavonoids, namely, 2',8'-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit Aβ toxicity and fibrillogenesis, implying that the participation of two monoflavonoids in a single biflavonoid molecule enhances their activity. Biflavonoids, while strongly inhibiting Aβ fibrillogenesis, accumulate nontoxic Aβ oligomeric structures, suggesting that these are off-pathway oligomers. Moreover, TF abrogates the toxicity of preformed Aβ oligomers and fibrils, indicating that TF and other biflavonoids may also reduce the toxicity of toxic Aβ species. Altogether, our data clearly show that biflavonoids, possibly because of the possession of two Aβ binders separated by an appropriate size linker, are likely to be promising therapeutics for suppressing Aβ toxicity.  相似文献   
75.
76.
77.
We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3′-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations.  相似文献   
78.

Background

The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates.

Methodology and Principal Findings

SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes.

Significance

This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex.  相似文献   
79.
So far, oil‐rewarding flowers are known to be pollinated only by oil‐collecting bees, which gather and use lipids for larval feed and nest building. As honeybees do not have oil‐collecting appendages on their legs, they have not been associated with pollination of such flowers. In a predominantly Apis pollinated and food deceptive clade of wild Cymbidiums, we investigated the reproductive strategy of Cymbidium aloifolium, hitherto unknown for its floral oil reward. Our study demonstrates the requisites for establishment of mutualistic interaction between the oil flower and Apis cerana indica, a corbiculate bee. Success in pollination requires learning by honeybees to access the food reward, thereby displaying cognitive ability of the pollinator to access the customized reward. Morphometric matching between orchid flowers and the pollinator, and that between pollinia and stigmatic cavity also appear to be essential in the pollination success. Absence of pollinator competition and prolonged flower‐handling time are suggested to promote floral constancy. The present study highlights the need to explore the spectrum of pollination rewards pursued by honeybees, which may include unconventional composition of floral resources.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号