首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   36篇
  387篇
  2023年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   17篇
  2014年   31篇
  2013年   27篇
  2012年   41篇
  2011年   30篇
  2010年   19篇
  2009年   12篇
  2008年   17篇
  2007年   17篇
  2006年   22篇
  2005年   28篇
  2004年   14篇
  2003年   16篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   7篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1990年   5篇
  1989年   1篇
  1983年   1篇
排序方式: 共有387条查询结果,搜索用时 0 毫秒
361.
362.
Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.  相似文献   
363.
The cyclic adenosine monophosphate (cAMP)‐dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A‐kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the β‐adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP‐associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias.  相似文献   
364.
The dihydropteroate synthase (dhps) genes of 44 P. malariae strains from four Asian countries were isolated. Only a limited number of polymorphisms were observed. Comparison with homologous mutations in other Plasmodium species showed that these polymorphisms are unlikely to be associated with sulfadoxine resistance.  相似文献   
365.
To study the contribution of antibody light (L) chains to the diversity and binding properties of immune repertoires, a phage display repertoire was constructed from a single human antibody L chain and a large collection of antibody heavy (H) chains harvested from the blood of two human donors immunized with tetanus toxoid (TT) vaccine. After selection for binding to TT, 129 unique antibodies representing 53 variable immunoglobulin H chain (VH) gene rearrangements were isolated. This panel of anti-TT antibodies restricted to a single variable immunoglobulin L chain (VL) could be organized into 17 groups binding non-competing epitopes on the TT molecule. Comparison of the VH regions in this VL-restricted panel with a previously published repertoire of anti-TT VH regions with cognate VH-VL pairing showed a very similar distribution of VH, DH and JH gene segment utilization and length of the complementarity-determining region 3 of the H chain. Surface plasmon resonance analysis of the single-VL anti-TT repertoire unveiled a range of affinities, with a median monovalent affinity of 2 nM. When the single-VL anti-TT VH repertoire was combined with a collection of naïve VL regions and again selected for binding to TT, many of the VH genes were recovered in combination with a diversity of VL regions. The affinities of a panel of antibodies consisting of a single promiscuous anti-TT VH combined with 15 diverse VL chains were determined and found to be identical to each other and to the original isolate restricted to a single-VL chain. Based on previous estimates of the clonal size of the human anti-TT repertoire, we conclude that up to 25% of human anti-TT-encoding VH regions from an immunized repertoire have promiscuous features. These VH regions readily combine with a single antibody L chain to result in a large panel of anti-TT antibodies that conserve the expected epitope diversity, VH region diversity and affinity of a natural repertoire.  相似文献   
366.
367.
Solid-state fermentation (SSF) is accompanied inevitably by development of concentration and temperature gradients within the substrate particles and microbial biofilms. These gradients are needed for driving the transport of substrates and products. In addition, concentration gradients have been suggested to be crucial for obtaining the characteristics that define the products of SSF; nevertheless, gradients are also known to result in reduced productivity and unwanted side reactions. Solid-state fermentations are generally batch processes and this further complicates their understanding as conditions change with time. Mathematical models are therefore needed for improving the understanding of SSF processes and allowing their manipulation to achieve the desired outcomes. Existing models of SSF processes describe coupled substrate conversion and diffusion and the consequent microbial growth. Existing models disregard many of the significant phenomena that are known to influence SSF. As a result, available models cannot explain the generation of the numerous products that form during any SSF process and the outcome of the process in terms of the characteristics of the final product. This review critically evaluates the proposed models and their experimental validation. In addition, important issues that need to be resolved for improved modeling of SSF are discussed.  相似文献   
368.
van Ooyen A  Roelfsema PR 《Neuron》2006,50(2):188-190
The primary visual cortex (area V1) is for vision. At least, that is what most researchers believe. However, in a recent issue of Science, Shuler and Bear demonstrate a correlate of reward timing in area V1. This surprising result indicates that brain circuits for reward processing are more extensive than expected and that area V1 has more functionality than previously thought.  相似文献   
369.
The cyclic nucleotide monophosphates cAMP and cGMP play an essential role in many signaling pathways. To analyze which proteins do interact with these second messenger molecules, we developed a chemical proteomics approach using cAMP and cGMP immobilized onto agarose beads, via flexible linkers in the 2- and 8-position of the nucleotide. Optimization of the affinity pull-down procedures in lysates of HEK293 cells revealed that a large variety of proteins could be pulled down specifically. Identification of these proteins by mass spectrometry showed that many of these proteins were indeed genuine cAMP or cGMP binding proteins. However, additionally many of the pulled-down proteins were more abundant AMP/ADP/ATP, GMP/GDP/GTP, or general DNA/RNA binding proteins. Therefore, a sequential elution protocol was developed, eluting proteins from the beads using solutions containing ADP, GDP, cGMP, and/or cAMP, respectively. Using this protocol, we were able to sequentially and selectively elute ADP, GDP, and DNA binding proteins. The fraction left on the beads was further enriched, for cAMP/cGMP binding proteins. Transferring this protocol to the analysis of the cGMP/cAMP "interactome" in rat heart ventricular tissue enabled the specific pull-down of known cAMP/cGMP binding proteins such as cAMP and cGMP dependent protein kinases PKA and PKG, several phosphodiesterases and 6 AKAPs, that interact with PKA. Among the latter class of proteins was the highly abundant sphingosine kinase type1-interating protein (SKIP), recently proposed to be a potential AKAP. Further bioinformatics analysis endorses that SKIP is indeed a genuine PKA interacting protein, which is highly abundant in heart ventricular tissue.  相似文献   
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号