首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   36篇
  2023年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   17篇
  2014年   31篇
  2013年   27篇
  2012年   41篇
  2011年   30篇
  2010年   19篇
  2009年   12篇
  2008年   17篇
  2007年   17篇
  2006年   22篇
  2005年   28篇
  2004年   14篇
  2003年   16篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   7篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1990年   5篇
  1989年   1篇
  1983年   1篇
排序方式: 共有387条查询结果,搜索用时 22 毫秒
241.

Objectives

Typical streak artifacts known as metal artifacts occur in the presence of strongly attenuating materials in computed tomography (CT). Recently, vendors have started offering metal artifact reduction (MAR) techniques. In addition, a MAR technique called the metal deletion technique (MDT) is freely available and able to reduce metal artifacts using reconstructed images. Although a comparison of the MDT to other MAR techniques exists, a comparison of commercially available MAR techniques is lacking. The aim of this study was therefore to quantify the difference in effectiveness of the currently available MAR techniques of different scanners and the MDT technique.

Materials and Methods

Three vendors were asked to use their preferential CT scanner for applying their MAR techniques. The scans were performed on a Philips Brilliance ICT 256 (S1), a GE Discovery CT 750 HD (S2) and a Siemens Somatom Definition AS Open (S3). The scans were made using an anthropomorphic head and neck phantom (Kyoto Kagaku, Japan). Three amalgam dental implants were constructed and inserted between the phantom’s teeth. The average absolute error (AAE) was calculated for all reconstructions in the proximity of the amalgam implants.

Results

The commercial techniques reduced the AAE by 22.0±1.6%, 16.2±2.6% and 3.3±0.7% for S1 to S3 respectively. After applying the MDT to uncorrected scans of each scanner the AAE was reduced by 26.1±2.3%, 27.9±1.0% and 28.8±0.5% respectively. The difference in efficiency between the commercial techniques and the MDT was statistically significant for S2 (p=0.004) and S3 (p<0.001), but not for S1 (p=0.63).

Conclusions

The effectiveness of MAR differs between vendors. S1 performed slightly better than S2 and both performed better than S3. Furthermore, for our phantom and outcome measure the MDT was more effective than the commercial MAR technique on all scanners.  相似文献   
242.
Recent papers have suggested that epifaunal organisms use artificial structures as stepping‐stones to spread to areas that are too distant to reach in a single generation. With thousands of artificial structures present in the North Sea, we test the hypothesis that these structures are connected by water currents and act as an interconnected reef. Population genetic structure of the blue mussel, Mytilus edulis, was expected to follow a pattern predicted by a particle tracking model (PTM). Correlation between population genetic differentiation, based on microsatellite markers, and particle exchange was tested. Specimens of M. edulis were found at each location, although the PTM indicated that locations >85 km offshore were isolated from coastal subpopulations. The fixation coefficient FST correlated with the number of arrivals in the PTM. However, the number of effective migrants per generation as inferred from coalescent simulations did not show a strong correlation with the arriving particles. Isolation by distance analysis showed no increase in isolation with increasing distance and we did not find clear structure among the populations. The marine stepping‐stone effect is obviously important for the distribution of M. edulis in the North Sea and it may influence ecologically comparable species in a similar way. In the absence of artificial shallow hard substrates, M. edulis would be unlikely to survive in offshore North Sea waters.  相似文献   
243.
Substituted xylan polymers constitute a major part of the hemicellulose fraction of plant cell walls, especially in monocotyledons. Endo-1,4-beta-xylanases (EC 3.2.1.8) are capable of hydrolyzing substituted xylan polymers into fragments of random size. Many herbivorous animals have evolved intimate relationships with endosymbionts to exploit their enzyme complexes for the degradation of xylan. Here, we report the first finding of a functional endo-1,4-beta-xylanase gene from an animal. The gene (Mi-xyl1) was found in the obligate plant-parasitic root-knot nematode Meloidogyne incognita, and encodes a protein that is classified as a member of glycosyl hydrolase family 5. The expression of Mi-xyl1 is localized in the subventral esophageal gland cells of the nematode. Previous studies have shown that M. incognita has the ability to degrade cellulose and pectic polysaccharides in plant cell walls independent of endosymbionts. Including our current data on Mi-xyl1, we show that the endogenous enzyme complex in root-knot nematode secretions targets essentially all major cell wall carbohydrates to facilitate a stealthy intercellular migration in the host plant.  相似文献   
244.
Membrane bioreactors (MBR) are an important and increasingly implemented wastewater treatment technology, which are operated at low food to microorganism ratios (F/M) and retain slow-growing organisms. Enhanced biological phosphorus removal (EBPR)-related organisms grow slower than ordinary heterotrophs, but have never been studied in detail in MBRs. This study presents a comprehensive analysis of the microorganisms involved in EBPR in pilot- and full-scale MBRs, using fluorescence in situ hybridization (FISH), as well as an overall assessment of other relevant microbial groups. The results showed that polyphosphate accumulating organisms (PAOs) were present at similar levels in all studied MBRs (10% ± 6%), even those without a defined anaerobic zone. Glycogen accumulating organisms were also detected, although rarely. The FISH results correlated well with the observed P removal performance of each plant. The results from this study suggest that a defined anaerobic zone is not necessarily required for putative PAO growth in MBRs, since polyphosphate storage may provide a selective advantage in fulfilling cell maintenance requirements in substrate-limited conditions (low F/M).  相似文献   
245.
ABSTRACT: BACKGROUND: Epidemiological data on malaria in Bangladesh are sparse, particularly on severe and fatal malaria. This hampers the allocation of healthcare provision in this resource-poor setting. Over 85% of the estimated 150,000-250,000 annual malaria cases in Bangladesh occur in Chittagong Division with 80% in the Chittagong Hill Tracts (CHT). Chittagong Medical College Hospital (CMCH) is the major tertiary referral hospital for severe malaria in Chittagong Division. METHODS: Malaria screening data from 22,785 inpatients in CMCH from 1999-2011 were analysed to investigate the patterns of referral, temporal trends and geographical distribution of severe malaria in Chittagong Division, Bangladesh. RESULTS: From 1999 till 2011, 2,394 malaria cases were admitted, of which 96% harboured Plasmodium falciparum and 4% Plasmodium vivax. Infection was commonest in males (67%) between 15 and 34 years of age. Seasonality of malaria incidence was marked with a single peak in P. falciparum transmission from June to August coinciding with peak rainfall, whereas P. vivax showed an additional peak in February-March possibly representing relapse infections. Since 2007 there has been a substantial decrease in the absolute number of admitted malaria cases. Case fatality in severe malaria was 18% from 2008-2011, remaining steady during this period. A travel history obtained in 226 malaria patients revealed only 33% had been to the CHT in the preceding three weeks. Of all admitted malaria patients, only 9% lived in the CHT, and none in the more remote malaria endemic regions near the Indian border. CONCLUSIONS: The overall decline in admitted malaria cases to CMCH suggests recent control measures are successful. However, there are no reliable data on the incidence of severe malaria in the CHT, the most endemic area of Bangladesh, and most of these patients do not reach tertiary health facilities. Improvement of early treatment and simple supportive care for severe malaria in remote areas and implementation of a referral system for cases requiring additional supportive care could be an important component of further reducing malaria-attributable disease and death in Bangladesh.  相似文献   
246.
247.
Our quantitative knowledge of carbon fluxes in the long slender bloodstream form (BSF) Trypanosoma brucei is mainly based on non-proliferating parasites, isolated from laboratory animals and kept in buffers. In this paper we present a carbon balance for exponentially growing bloodstream form trypanosomes. The cells grew with a doubling time of 5.3h, contained 46 μ mol of carbon (10(8) cells)(-1) and had a glucose consumption flux of 160 nmol min(-1) (10(8) cells)(-1). The molar ratio of pyruvate excreted versus glucose consumed was 2.1. Furthermore, analysis of the (13)C label distribution in pyruvate in (13)C-glucose incubations of exponentially growing trypanosomes showed that glucose was the sole substrate for pyruvate production. We conclude that the glucose metabolised in glycolysis was hardly, if at all, used for biosynthetic processes. Carbon flux through glycolysis in exponentially growing trypanosomes was 10 times higher than the incorporation of carbon into biomass. This biosynthetic carbon is derived from other precursors present in the nutrient rich growth medium. Furthermore, we found that the glycolytic flux was unaltered when the culture went into stationary phase, suggesting that most of the ATP produced in glycolysis is used for processes other than growth.  相似文献   
248.
Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions.Lactobacillus delbrueckii subsp. bulgaricus (Lactobacillus bulgaricus) and Streptococcus thermophilus have been used in starter cultures for yogurt manufacturing for thousands of years. Both species are known to stably coexist in a milk environment and interact beneficially. This so-called protocooperation, previously defined as biochemical mutualism, involves the exchange of metabolites and/or stimulatory factors (38). Examples of biochemical protocooperation between L. bulgaricus and S. thermophilus include the action of cell wall-bound proteases, produced by L. bulgaricus strains, and formate, required for growth of L. bulgaricus and supplied by S. thermophilus (6, 7). An overview of the interactions between the two yogurt bacteria, including the exchange of CO2, pyruvate, folate, etc., can be found in a recently published review by Sieuwerts et al. (43). Putative genetic mechanisms underlying protocooperation, however, so far have not been studied in detail.The genomes of two L. bulgaricus strains and three S. thermophilus strains, all used in yogurt manufacturing, have been fully sequenced (3, 32, 33, 34, 39, 44, 46). The available genomic information could provide new insights into the genetic aspects of protocooperation between L. bulgaricus and S. thermophilus through the identification of putative horizontal gene transfer (HGT) events at the genome scale. HGT can be defined as the exchange of genetic material between phylogenetically unrelated organisms (23). It is considered to be a major factor in the process of environmental adaptation, for both individual species and entire microbial populations. Especially HGT events between two species existing in the same niche can reflect their interrelated activities and dependencies (13, 17). Nicolas et al. (36) predicted HGT events between Lactobacillus acidophilus and Lactobacillus johnsonii by analyzing 401 phylogenetic trees, also including the genes of L. bulgaricus. Several HGT events have been predicted in the S. thermophilus strains CNRZ1066 and LMG 18311 (3, 10, 18) as well as in L. bulgaricus ATCC 11842 (46). Moreover, a core genome of S. thermophilus and possibly acquired genes were identified by a comparative genome hybridization study of 47 strains (40).In this study, we describe an in-depth bioinformatics analysis in which we combined gene composition (GC content and dinucleotide composition) and gene transfer mechanism-associated features. Thus, we predicted horizontally transferred genes and gene clusters in the five sequenced L. bulgaricus and S. thermophilus genomes, with a focus on niche-specific genes and genes required for bacterial growth. Identification of HGT events led to a list of putative transferred genes, some of which could be important for bacterial protocooperation and the adaptation to their environment. The evolution and function of the transferred gene cluster cbs-cblB(cglB)-cysE (originally called cysM2-metB2-cysE2 in S. thermophilus), involved in the metabolism of sulfur-containing amino acids, were analyzed in detail. On the basis of our analysis, it can be concluded that both species probably agonistically coevolved at the genetic level to optimize their combined growth in a milk environment and that protocooperation thus includes both biochemical and genetic aspects.  相似文献   
249.
Background, aim, and scope  The environmental burden of photovoltaic (PV) solar modules is currently largely determined by the cumulative input of fossil energy used for module production. However, with an increased focus on limiting the emission of CO2 coming from fossil fuels, it is expected that renewable resources, including photovoltaics, may well become more important in producing electricity. A comparison of the environmental impacts of PV modules in case their life cycle is based on the use of PV electricity in contrast to conventional electricity can elucidate potential environmental drawbacks in an early stage of development of a solar-based economy. The goal of this paper is to show for ten impact categories the environmental consequences of replacing fossil electricity with solar electricity into the life cycle of two types of PV modules. Materials and methods  Using life cycle assessment (LCA), we evaluated the environmental impacts of two types of PV modules: a thin-film GaInP/GaAs tandem module and a multicrystalline silicon (multi-Si) module. For each of the modules, the total amount of fossil electricity required in the life cycle of the module was substituted with electricity that is generated by a corresponding PV module. The environmental impacts of the modules on the midpoint level were compared with those of the same modules in case their life cycle is based on the use of conventional electricity. The environmental impacts were assessed for Western European circumstances with an annual solar irradiation of 1000 kWh/m2. For the GaInP/GaAs module, the environmental impacts of individual production steps were also analysed. Results  Environmental burdens decreased when PV electricity was applied in the life cycle of the two PV modules. The impact score reductions of the GaInP/GaAs module were up to a factor of 4.9 (global warming). The impact score reductions found for the multi-Si module were up to a factor of 2.5 (abiotic depletion and global warming). Reductions of the toxicity scores of both module types were smaller or negligible. This is caused by a decreased use of fossil fuels, on the one hand, and an increased consumption of materials for the production of the additional solar modules used for generating the required PV electricity on the other. Overall, the impact scores of the GaInP/GaAs module were reduced more than the corresponding scores of the multi-Si module. The contribution analysis of the GaInP/GaAs module production steps indicated that for global warming, the cell growth process is dominant for supply with conventional electricity, while for the solar scenario, the frame becomes dominant. Regarding freshwater aquatic ecotoxicity scores associated with the life cycle of the GaInP/GaAs module, the cell growth process is dominant for supply with conventional electricity, while the reactor system for the cell growth with the associated gas scrubbing system is dominant for the solar scenario. Discussion  There are uncertainties regarding the calculated environmental impact scores. This paper describes uncertainties associated with the used economic allocation method, and uncertainties because of missing life cycle inventory data. For the GaInP/GaAs module, it was found that the global warming impact scores range from −66% to +41%, and the freshwater aquatic ecotoxicity scores (for an infinite time horizon) range from −40% to +300% compared to the default estimates. For both impact categories, the choices associated with the allocation of gallium, with the electricity mix, with the conversion efficiency of the commercially produced GaInP/GaAs cells, and with the yield of the cell growth process are most influential. For freshwater aquatic ecotoxicity, the uncertainty concerning the lifetime of the reactor system for the GaInP/GaAs cell growth process and the gas scrubbing system is particularly relevant. Conclusions  Use of PV electricity instead of fossil electricity significantly reduces the environmental burdens of the GaInP/GaAs and the multi-Si module. The reductions of the toxicity scores, however, are smaller or negligible. Toxicity impacts of the GaInP/GaAs cells can be reduced by improvement of the yield of the cell growth process, a reduced energy demand in the cell growth process, reduction of the amount of stainless steel in the cell growth reactor system and the gas scrubbing system, and a longer lifetime of these systems. Recommendations and perspectives  Because the greenhouse gas emissions associated with the production of fossil-fuel-based electricity have an important share in global warming on a world-wide scale, switching to a more extensive use of solar power is helpful to comply with the present international legislation on the area of global warming reduction. As reductions in toxicity impact scores are smaller or negligible when fossil electricity is replaced by PV electricity, it is desirable to give specific attention to the processes which dominantly contribute to these impact categories. Furthermore, in this study, a shift in ranking of several environmental impacts of the modules has been found when PV electricity is used instead of fossil electricity. The results of a comparative LCA can thus be dependent of the electricity mix used in the life cycles of the assessed products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号